Skip to main content

Advertisement

Log in

An overview of the impacts of coal mining and processing on soil: assessment, monitoring, and challenges in the Czech Republic

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Coal mining activities are causing an extensive range of environmental issues at both operating and abandoned mine sites. It is one of the most environmentally destructive practices, with the capability to eliminate fauna and flora, impact the groundwater system, and pollute the soil, air, and water. The Czech Republic relies almost exclusively on coal as its primary domestic source of energy. The combined reserves of hard and brown coals in this country are 705 million tons. About 50 million tons of coal is produced annually, making it the 14th biggest producer in the world. Soil degradation is an inevitable outcome of the coal production from surface coal mining procedures in the Czech Republic. Significant changes have taken place in soil productivity, hydraulic characteristics, horizon, and texture as a result of soil pollution, bioturbation, compaction, and weathering. The current review has evaluated the impact of reclamation and coal mining on soil characteristics, including biological, chemical, and physical properties. Additionally, the study has outlined the process of soil formation in reclamation areas in the Czech Republic. In nutshell, research gaps and future directions in understanding coal mining areas and their influences on soils in the Czech Republic are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source Vráblík et al., 2017)

Fig. 3

Adopted from Kořeny (2012)

Fig. 4

(Source Stephen Greb, 2009)

Fig. 5

(Adopted from: Vrablikova et al. (2016))

Fig. 6

(Source O. Mudrak)

Similar content being viewed by others

Data availability

The datasets generated during this study are presented in the tables in this manuscript and in the supplementary material.

References

  • Abakumov, E., Cajthaml, T., Brus, J., & Frouz, J. (2013). Humus accumulation, humification, and humic acid composition in soils of two post-mining chronosequences after coal mining. Journal of Soils and Sediments, 13, 491–500. https://doi.org/10.1007/s11368-012-0579-9

    Article  CAS  Google Scholar 

  • Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Abliz, A., Shi, Q., Keyimu, M., & Sawut, R. (2018). Spatial distribution, source, and risk assessment of soil toxic metals in the coal-mining region of northwestern China. Arabian Journal of Geosciences, 11, 1–13. https://doi.org/10.1007/s12517-018-4152-8

    Article  CAS  Google Scholar 

  • Achten, C., & Hofmann, T. (2009). Native polycyclic aromatic hydrocarbons (PAH) in coals—a hardly recognized source of environmental contamination. Science of the Total Environment, 407(8), 2461–2473. https://doi.org/10.1016/j.scitotenv.2008.12.008

    Article  CAS  Google Scholar 

  • Ahirwal, J., & Maiti, S. K. (2016). Assessment of soil properties of different land uses generated due to surface coal mining activities in tropical Sal (Shorea robusta) forest, India. CATENA, 140, 155–163. https://doi.org/10.1016/j.catena.2016.01.028

    Article  CAS  Google Scholar 

  • Ahrens, M. J., & Morrisey, D. J. (2005). Biological effects of unburnt coal in the marine environment. In Oceanography and marine biology (pp. 79–132). CRC Press.

  • Ambade, B., & Sethi, S. S. (2021). Health risk assessment and characterization of polycyclic aromatic hydrocarbon from the hydrosphere. Journal of Hazardous, Toxic, and Radioactive Waste, 25, 05020008. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000586

    Article  CAS  Google Scholar 

  • Anděl, J., (1990). Evaluation of the state and development of the environment in the North Bohemian Region, Prague. VÚVA, p. 123.

  • Angers, D. A., & Caron, J. (1998). Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry, 42, 55–72. https://doi.org/10.1023/A%3A1005944025343

    Article  Google Scholar 

  • Arshad, M., Franzluebbers, A. J., & Azooz, R. (1999). Components of surface soil structure under conventional and no-tillage in northwestern Canada. Soil & Tillage Research, 53, 41–47.

    Google Scholar 

  • Asensio, V., Vega, F. A., Andrade, M. L., & Covelo, E. F. (2013). Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere, 90(2), 603–610. https://doi.org/10.1016/j.chemosphere.2012.08.050

    Article  CAS  Google Scholar 

  • Asensio, V., Vega, F. A., & Covelo, E. F. (2014). Effect of soil reclamation process on soil C fractions. Chemosphere, 95, 511–518. https://doi.org/10.1016/j.chemosphere.2013.09.108

    Article  CAS  Google Scholar 

  • Baldrian, P., Trögl, J., Frouz, J., Šnajdr, J., Valášková, V., Merhautová, V., Cajthaml, T., & Herinková, J. (2008). Enzyme activities and microbial biomass in topsoil layer during spontaneous succession in spoil heaps after brown coal mining. Soil Biology and Biochemistry, 40(9), 2107–2115. https://doi.org/10.1016/j.soilbio.2008.02.019

    Article  CAS  Google Scholar 

  • Barjoee, S. S., Malverdi, E., Kouhkan, M., Alipourfard, I., Rouhani, A., Farokhi, H., & Khaledi, A. (2023). Health assessment of industrial ecosystems of Isfahan (Iran) using phytomonitoring: Chemometric, micromorphology, phytoremediation, air pollution tolerance and anticipated performance indices. Urban Climate, 48, 101394. https://doi.org/10.1016/j.uclim.2022.101394

    Article  Google Scholar 

  • Bartuška, M., Pawlett, M., & Frouz, J. (2015). Particulate organic carbon at reclaimed and unreclaimed post-mining soils and its microbial community composition. CATENA, 131, 92–98. https://doi.org/10.1016/j.catena.2015.03.019

    Article  CAS  Google Scholar 

  • Bell, F. G., & Donnelly, L. J. (2006). Mining and its impact on the environment (p. 536). CRC Press.

    Google Scholar 

  • Bera, D., Bera, S., & Chatterjee, N. D. (2020). Termite mound soil properties in West Bengal, India. Geoderma Regional. https://doi.org/10.1016/j.geodrs.2020.e00293

    Article  Google Scholar 

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392. https://doi.org/10.1016/j.jhazmat.2009.08.085

    Article  CAS  Google Scholar 

  • Blouin, M., Hodson, M. E., Delgado, E. A., Baker, G., Brussaard, L., Butt, K. R., Dai, J., Dendooven, L., Pérès, G., Tondoh, J. E., Cluzeau, D., & Brun, J. J. (2013). A review of earthworm impact on soil function and ecosystem services. European Journal of Soil Science. https://doi.org/10.1111/Ejss.12025

    Article  Google Scholar 

  • Boahen, F., Száková, J., Kališová, A., Najmanová, J., & Tlustoš, P. (2023). The assessment of the soil–plant-animal transport of the risk elements at the locations affected by brown coal mining. Environmental Science and Pollution Research, 30(1), 337–351. https://doi.org/10.1007/s11356-022-22254-y

    Article  CAS  Google Scholar 

  • Bodlák, L., Křováková, K., Kobesová, M., Brom, J., Šťastný, J., & Pecharová, E. (2012). SOC content—An appropriate tool for evaluating the soil quality in a reclaimed post-mining landscape. Ecological Engineering, 43, 53–59. https://doi.org/10.1016/j.ecoleng.2011.07.013

    Article  Google Scholar 

  • Borůvka, L., Kozák, J., Mühlhanselová, M., Donátová, H., Nikodem, A., Němeček, K., & Drábek, O. (2012). Effect of covering with natural topsoil as a reclamation measure on brown-coal mining dumpsites. Journal of Geochemical Exploration, 113, 118–123. https://doi.org/10.1016/j.gexplo.2011.11.004

    Article  CAS  Google Scholar 

  • Boyer, S., Wratten, S. D., Pizey, M., & Weber, P. A. (2011). Impact of soil stockpiling and mining rehabilitation on earthworm communities. Pedobiologia. https://doi.org/10.1016/j.pedobi.2011.09.006

    Article  Google Scholar 

  • Bradshaw, A. (1997). Restoration of mined land using natural processes. Ecological Engineering, 8, 255–269.

    Google Scholar 

  • Brady, N.C., & Weil, R.R. (2002). The nature and properties of soils. In Helba, S., Asherman, C. (3rd Edition). Prentice-Hall, p. 960.

  • Brady, N. C., & Weil, R. R. (1999). The nature and properties of Soils. Prentice Hall.

    Google Scholar 

  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1), 3–22.

    CAS  Google Scholar 

  • Brown, S. N., & Swab, R. M. (2021). To establish a healthy forest: Restoration of the forest herb layer on a reclaimed mine site. The American Midland Naturalist, 186(1), 35–50. https://doi.org/10.1674/0003-0031-186.1.35

    Article  Google Scholar 

  • Bujalský, L., Kaneda, S., Dvorščík, P., & Frouz, J. (2014). In situ soil respiration at reclaimed and unreclaimed post-mining sites: Responses to temperature and reclamation treatment. Ecological Engineering, 68, 53–59. https://doi.org/10.1016/j.ecoleng.2014.03.048

    Article  Google Scholar 

  • Bussler, B., Byrnes, W., Pope, P., & Chaney, W. (1984). Properties of mine soil reclaimed for forest land use. Soil Science Society of America Journal, 48, 178–184.

    CAS  Google Scholar 

  • Byrne, C. F., Stormont, J. C., & Stone, M. C. (2017). Soil water balance dynamics on reclaimed mine land in the southwestern United States. Journal of Arid Environments, 136, 28–37.

    Google Scholar 

  • Camberato, J. J., Gagnon, B., Angers, D. A., Chantigny, M. H., & Pan, W. L. (2006). Pulp and paper mill by-products as soil amendments and plant nutrient sources. Canadian Journal of Soil Science, 86, 641–653. https://doi.org/10.4141/S05-120

    Article  Google Scholar 

  • Cejpek, J., Kuráž, V., & Frouz, J., (2013). Hydrological properties of soils in reclaimed and unreclaimed sites after brown-coal mining. Polish Journal of Environmental Studies, 22(3).

  • Černoch, F., Lehotský, L., Ocelík, P., Osička, J., & Vencourová, Ž. (2019). Anti-fossil frames: Examining narratives of the opposition to brown coal mining in the Czech Republic. Energy Research & Social Science. https://doi.org/10.1016/j.erss.2019.04.011

    Article  Google Scholar 

  • Chakraborty, P., Wood, D. A., Singh, S., & Hazra, B. (2023). Trace element contamination in soils surrounding the open-cast coal mines of eastern Raniganj basin, India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01556-1

    Article  Google Scholar 

  • Chuman, T. (2015). Restoration practices used on post mining sites and industrial deposits in the Czech Republic with an example of natural restoration of granodiorite quarries and spoil heaps. Journal of Landscape Ecology, 8(2), 29–46. https://doi.org/10.1515/jlecol-2015-0007

    Article  Google Scholar 

  • Ciolkosz, E. J., Cronce, R. C., Cunningham, R. L., & Petersen, G. W. (1985). Characteristics, genesis, and classification of Pennsylvania minesoils. Soil Science, 139(3), 232–238.

    CAS  Google Scholar 

  • Coleman, D. C., Callaham, M., & Crossley, D. A., Jr. (2017). Fundamentals of soil ecology. Academic Press.

    Google Scholar 

  • Cornwell, W. K., Cornelissen, J. H., Amatangelo, K. L., Dorrepaal, E., Eviner, V., Godoy, Ó., Hobbie, S. E., Hoorens, B., Kurokawa, H., Pérez-Harguindeguy, N., Quested, H. M., Santiago, L. S., Wardle, D. A., Wright, I. J., Aerts, R., Allison, S. D., Van Bodegom, P., Brovkin, V., Chatain, A., … Westoby, M. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters, 11(10), 1065–1071. https://doi.org/10.1111/j.1461-0248.2008.01219.x

    Article  Google Scholar 

  • Courtney, R., Harrington, T. J., & Byrne, K. A. (2013). Indicators of soil formation in restored bauxite residues. Ecological Engineering, 58, 63–68. https://doi.org/10.1016/j.ecoleng.2013.06.022

    Article  Google Scholar 

  • de Quadros, P. D., Zhalnina, K., Davis-Richardson, A. G., Drew, J. C., Menezes, F. B., Camargo, F. A. D. O., & Triplett, E. W. (2016). Coal mining practices reduce the microbial biomass, richness and diversity of soil. Applied Soil Ecology, 98, 195–203. https://doi.org/10.1016/j.apsoil.2015.10.016

    Article  Google Scholar 

  • Dempster, D. N., Jones, D. L., & Murphy, D. V. (2012). Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Research, 50(3), 216–221. https://doi.org/10.1071/SR11316

    Article  CAS  Google Scholar 

  • Diggs, D. L., Huderson, A. C., Harris, K. L., Myers, J. N., Banks, L. D., Rekhadevi, P. V., Niaz, M. S., & Ramesh, A. (2011). Polycyclic aromatic hydrocarbons and digestive tract cancers: A perspective. Journal of Environmental Science and Health, Part c, 29(4), 324–357. https://doi.org/10.1080/10590501.2011.629974

    Article  CAS  Google Scholar 

  • Doerr, S. H., Shakesby, R. A., Dekker, L. W., & Ritsema, C. J. (2006). Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. European Journal of Soil Science, 57(5), 741–754. https://doi.org/10.1111/j.1365-2389.2006.00818.x

    Article  Google Scholar 

  • Doležalová Weissmannová, H., Mihočová, S., Chovanec, P., & Pavlovský, J. (2019). Potential ecological risk and human health risk assessment of heavy metal pollution in industrial affected soils by coal mining and metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health, 16(22), 4495. https://doi.org/10.3390/ijerph16224495

    Article  CAS  Google Scholar 

  • Dvořák, J., Wittlingerová, Z., Vochozka, M., Stehel, V., & Marousková, A. (2017). Updated energy policy of the Czech Republic may result in instability of the electricity grid in Central Europe. Clean Technologies and Environmental Policy, 20, 41–52. https://doi.org/10.1016/10.1007/s10098-017-1451-9

    Article  Google Scholar 

  • Ekblad, A., & HussDanell, K. (1995). Nitrogen fixation by Alnus incana and nitrogen transfer from A. incana to Pinus sylvestris influenced by macronutrients and ectomycorrhiza. New Phytologist, 131, 453–459.

    Google Scholar 

  • EURACOAL, (2018). European Association for Coal and Lignite. https://euracoal.eu/info/country-profiles/czech-republic/. April, 2023.

  • European Commission (EC), Eurostat, (2015). Energy balance sheets: 2013 data, Publications Office. https://data.europa.eu/doi/https://doi.org/10.2785/388553

  • European Commission (EC), Eurostat, (2019). https://ec.europa.eu/eurostat/web/main.

  • Evans, D. M., Zipper, C. E., Hester, E. T., & Schoenholtz, S. H. (2015). Hydrologic effects of surface coal mining in Appalachia (U.S.). JAWRA Journal of the American Water Resources Association, 51, 1436–1452. https://doi.org/10.1111/1752-1688.12322

    Article  Google Scholar 

  • Fan, J., Sun, Y., Li, X., Zhao, C., Tian, D., Shao, L., & Wang, J. (2013). Pollution of organic compounds and heavy metals in a coal gangue dump of the Gequan Coal Mine, China. Chinese Journal of Geochemistry, 32, 241–247. https://doi.org/10.1007/s11631-013-0628-0

    Article  CAS  Google Scholar 

  • Feng, C., Kou, J., Gan, Y., Lei, S., Meng, W., & Xiao, H. (2022). Soil health and ecological risk assessment in the typical coal mines on the Mongolian Plateau. SSRN Electronic Journal. https://doi.org/10.1016/j.ecolind.2022.109189

    Article  Google Scholar 

  • Feng, Y., Wang, J., Bai, Z., & Reading, L. (2019). Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews, 191, 12–25. https://doi.org/10.1016/j.earscirev.2019.02.015

    Article  CAS  Google Scholar 

  • Finér, L., Helmisaari, H. S., Lõhmus, K., Majdi, H., Brunner, I., Børja, I., Eldhuset, T. D., Godbold, D. L., Grebenc, T., Konôpka, B., Kraigher, H., Möttönen, M., Ohashi, M., Oleksyn, J., Ostonen, I., Uri, V., & Vanguelova, E. (2007). Variation in fine root biomass of three European tree species: Beech (Fagus sylvatica L.), Norway spruce (Picea abies L. Karst.), and Scots pine (Pinus sylvestris L.). Plant Biosystems—an International Journal Dealing with All Aspects of Plant Biology, 141, 394–405. https://doi.org/10.1080/11263500701625897

    Article  Google Scholar 

  • Frantál, B. (2016). Living on coal: Mined-out identity, community displacement and forming of anti-coal resistance in the Most region, Czech Republic. Resources Policy, 49, 385–393. https://doi.org/10.1016/j.resourpol.2016.07.011

    Article  Google Scholar 

  • Frantál, B. (2017). Under the curse of coal. In S. Bouzarovski, M. J. Pasqualetti, & V. C. Broto (Eds.), The routledge research companion to energy geographies (pp. 200–216). Routledge. https://doi.org/10.4324/9781315612928-13

    Chapter  Google Scholar 

  • Frouz, J. (2021). Soil recovery and reclamation of mined lands. Soils and Landscape Restoration. https://doi.org/10.1016/B978-0-12-813193-0.00006-0

    Article  Google Scholar 

  • Frouz, J., & Bujalský, L. (2018). Flow of CO2 from soil may not correspond with CO2 concentration in soil. Scientific Reports, 8(1), 10099. https://doi.org/10.1038/s41598-018-28225-z

    Article  CAS  Google Scholar 

  • Frouz, J., Elhottová, D., Kuráž, V., & Šourková, M. (2006). Effects of soil macrofauna on other soil biota and soil formation in reclaimed and unreclaimed post mining sites: Results of a field microcosm experiment. Applied Soil Ecology, 33(3), 308–320. https://doi.org/10.1016/j.apsoil.2005.11.001

    Article  Google Scholar 

  • Frouz, J., Kalcik, J., & Velichova, V. (2011). Factors causing spatial heterogeneity in soil properties, plant cover, and soil fauna in a non-reclaimed post-mining site. Ecological Engineering, 37(11), 1910–1913.

    Google Scholar 

  • Frouz, J., Livečková, M., Albrechtová, J., Chroňáková, A., Cajthaml, T., Pižl, V., Háněl, L., Starý, J., Baldrian, P., Lhotáková, Z., Šimáčková, H., & Cepáková, Š. (2013). Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites. Forest Ecology and Management, 309, 87–95. https://doi.org/10.1016/j.foreco.2013.02.013

    Article  Google Scholar 

  • Frouz, J., Prach, K., Piz̆l, V., Háněl, L., Starý, J., Tajovský, K., Materna, J., Balik, V., Kalčík, J., & Řehounková, K. (2008). Interactions between soil development, vegetation and soil fauna during spontaneous succession in post mining sites. European Journal of Soil Biology, 44, 109–121. https://doi.org/10.1016/j.ejsobi.2007.09.002

    Article  Google Scholar 

  • Gao, B., Feng, Q., Zhou, L., Wu, H., & Alam, E. (2019). Distributions of polycyclic aromatic hydrocarbons in coal in China. Polish Journal of Environmental Studies, 28(3), 1665–1674. https://doi.org/10.15244/pjoes/89899

    Article  Google Scholar 

  • García-Sánchez, M., Košnář, Z., Mercl, F., Aranda, E., & Tlustoš, P. (2018). A comparative study to evaluate natural attenuation, mycoaugmentation, phytoremediation, and microbial-assisted phytoremediation strategies for the bioremediation of an aged PAH-polluted soil. Ecotoxicology and Environmental Safety, 147, 165–174. https://doi.org/10.1016/j.ecoenv.2017.08.012

    Article  CAS  Google Scholar 

  • Ge, J., & Lei, Y. (2013). Mining development, income growth and poverty alleviation: A multiplier decomposition technique applied to China. Resources Policy, 38(3), 278–287.

    Google Scholar 

  • Ghosh, S., Dutta, S., Bhattacharyya, S., Konar, R., & Priya, T. (2022). Paradigms of biomarker and PAH distributions in lower Gondwana bituminous coal lithotypes. International Journal of Coal Geology, 260, 104067. https://doi.org/10.1016/j.coal.2022.104067

    Article  CAS  Google Scholar 

  • Gómez-Sagasti, M. T., Alkorta, I., Becerril, J. M., Epelde, L., Anza, M., & Garbisu, C. (2012). Microbial monitoring of the recovery of soil quality during heavy metal phytoremediation. Water, Air, & Soil Pollution, 223, 3249–3262. https://doi.org/10.1007/s11270-012-1106-8

    Article  CAS  Google Scholar 

  • Gonzalez-Fernandez, O., Batista, M. J., Abreu, M. M., Queralt, I., & Carvalho, M. L. (2011). Elemental characterization of edible plants and soils in an abandoned mining region: Assessment of environmental risk. X-Ray Spectrometry, 40, 353–363. https://doi.org/10.1002/xrs.1348

    Article  CAS  Google Scholar 

  • Good, J. E., Wallace, H. L., Stevens, P. A., & Radford, G. L. (1999). Translocation of herb-rich grassland from a site in Wales prior to opencast coal extraction. Restoration Ecology, 7(4), 336–347.

    Google Scholar 

  • Gopinathan, P., Jha, M., Singh, A. K., Mahato, A., Subramani, T., Singh, P. K., & Singh, V. (2022a). Geochemical characteristics, origin and forms of sulphur distribution in the Talcher coalfield, India. Fuel, 316, 123376. https://doi.org/10.1016/j.fuel.2022.123376

    Article  CAS  Google Scholar 

  • Gopinathan, P., Santosh, M. S., Dileepkumar, V. G., Subramani, T., Reddy, R., Masto, R. E., & Maity, S. (2022c). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 307, 135710. https://doi.org/10.1016/j.chemosphere.2022.135710

    Article  CAS  Google Scholar 

  • Gopinathan, P., Singh, A. K., Singh, P. K., & Jha, M. (2022b). Sulphur in Jharia and Raniganj coalfields: Chemical fractionation and its environmental implications. Environmental Research, 204, 112382. https://doi.org/10.1016/j.envres.2021.112382

    Article  CAS  Google Scholar 

  • Greb, S. F., (2009). Underground and surface mining methods diagram: Kentucky geological survey website [Accessed on 14 May 2023]. https://www.uky.edu/KGS/coal/coal-diagram-download.php.

  • Habib, M. A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Phoungthong, K., Khan, R., Rashid, M. B., Islam, A. R. M. T., & Techato, K. (2019). Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochimica Acta, 107(3), 243–259. https://doi.org/10.1515/ract-2018-3044

    Article  CAS  Google Scholar 

  • Haering, K. C., Daniels, W. L., & Roberts, J. A. (1993). Changes in mine soil Properties resulting from overburden weathering. Journal of Environmental Quality, 22(1), 194–200.

    Google Scholar 

  • Hagen-Thorn, A., Armolaitis, S., Callesen, I., & Stjernquist, I. (2004). Macronutrients in tree stems and foliage: a comparative study of six temperate forest species planted at the same sites. Annals of Forest Science, 61, 489–498.

    CAS  Google Scholar 

  • Háněl, L. (2002). Development of soil nematode communities on coal-mining dumps in two different landscapes and reclamation practices. European Journal of Soil Biology, 38, 167–171. https://doi.org/10.1016/S1164-5563(02)01140-8

    Article  Google Scholar 

  • Hanousková, B., Száková, J., Rychlíková, E., Najmanová, J., Košnář, Z., & Tlustoš, P. (2021). The risk assessment of inorganic and organic pollutant levels in an urban area affected by intensive industry. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-020-08825-x

    Article  Google Scholar 

  • Harris, J. A., Birch, P., & Short, K. C. (1989). Changes in microbial community and physicochemical characteristics of topsoils stockpiled during opencast mining. Soil Use Management, 5(4), 161–168.

    Google Scholar 

  • Hendrychová, M. (2008). Reclamation success in post-mining landscapes in the Czech Republic: A review of pedological and biological studies. Journal of Landscape Studies, 1, 63–78.

    Google Scholar 

  • Hendrychová, M., Šálek, M., Tajovský, K., & Řehoř, M. (2012). Soil properties and species richness of invertebrates on afforested sites after brown coal mining. Restoration Ecology, 20(5), 561–567. https://doi.org/10.1111/j.1526-100X.2011.00841.x

    Article  Google Scholar 

  • Hindersmann, B., & Achten, C. (2018). Urban soils impacted by tailings from coal mining: PAH source identification by 59 PAHs, BPCA and alkylated PAHs. Environmental Pollution, 242, 1217–1225. https://doi.org/10.1016/j.envpol.2018.08.014

    Article  CAS  Google Scholar 

  • Hlava, J., Hlavová, A., Hakl, J., & Fér, M. (2014). Earthworm responses to different reclamation processes in post opencast mining lands during succession. Environmental Monitoring and Assessment, 187, 1–10. https://doi.org/10.1007/s10661-014-4108-8

    Article  Google Scholar 

  • Holoubek, I., Dusek, L., Machala, M., Hilscherova, K., Cupr, P., & Blaha, K. (2001). Project idris — ecological risk assessment — regional approaches. In: Linkov, I., Palma-Oliveira, J. (Eds.), Assessment and Management of Environmental Risks. NATO Science Series (Vol. 4). Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0987-4_28

  • Horn, R., Taubner, H., Wuttke, M., & Baumgartl, T. (1994). Soil physical properties related to soil structure. Soil and Tillage Research, 30, 187–216.

    Google Scholar 

  • Huang, J., Guo, S., Zeng, G., Li, F., Gu, Y., Shi, Y., Shi, L., Liu, W., & Peng, S. (2018). A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use. Environmental Pollution, 243, 49–58. https://doi.org/10.1016/j.envpol.2018.08.038

    Article  CAS  Google Scholar 

  • Igwe, J. C., & Ukaogo, P. O. (2015). Environmental effects of polycyclic aromatic hydrocarbons. Journal of Natural Science and Research, 5(7), 117–131.

    Google Scholar 

  • International Energy Agency (IEA), (2016b). Energy Policies of IEA Countries: Czech Republic 2016b Review, OECD/IEA, Paris, 2016b. https://www.iea.org/reports/energy-policies-of-iea-countries-czech-republic-2016-review

  • International Energy Agency (IEA). (2016a). CO2 Emissions from Fuel Combustion 2016, CO2 Emissions from Fuel Combustion. OECD Publishing, Paris. https://doi.org/10.1787/co2_fuel-2016-en

    Article  Google Scholar 

  • Iovieno, P., Alfani, A., & Bååth, E. (2010). Soil microbial community structure and biomass as affected by Pinus pinea plantation in two Mediterranean areas. Applied Soil Ecology, 45(1), 56–63. https://doi.org/10.1016/j.apsoil.2010.02.001

    Article  Google Scholar 

  • Ivanov, M., Faimon, J., Jarmara, P., & Pesak, L. (2009). Evolution of minesoils at a coal waste pile: A case study from Rosice-Oslavany (Czech Republic). Studia UBB Geologia, 54(1), 61–64. https://doi.org/10.5038/1937-8602.54.1.12

    Article  Google Scholar 

  • Jačka, L., Walmsley, A., Kovář, M., & Frouz, J. (2021). Effects of different tree species on infiltration and preferential flow in soils developing at a clayey spoil heap. Geoderma, 403, 115372. https://doi.org/10.1016/j.geoderma.2021.115372

    Article  CAS  Google Scholar 

  • Jia, Y., Yang, X., Yan, X., Duguer, W., Hu, H., & Chen, J. (2023). Accumulation, potential risk and source identification of toxic metal elements in soil: a case study of a coal-fired power plant in Western China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01661-1

    Article  Google Scholar 

  • Jiskani, I. M., Cai, Q., Zhou, W., Lu, X., & Shah, S. A. A. (2022). An integrated fuzzy decision support system for analyzing challenges and pathways to promote green and climate smart mining. Expert Systems with Applications, 188, 116062.

    Google Scholar 

  • Johnson, C. D., & Skousen, J. G. (1995). Minesoil properties of 15 abandoned mine land sites in West-Virginia. Journal of Environmental Quality, 24(4), 635–643.

    CAS  Google Scholar 

  • Kabata-Pendias, A., & Pendias, H. (2001). Trace elements in soils and plants (3rd ed.). CRC Press.

    Google Scholar 

  • Kamanzi, C., Becker, M., Jacobs, M., Konečný, P., Von Holdt, J., & Broadhurst, J. (2023). The impact of coal mine dust characteristics on pathways to respiratory harm: Investigating the pneumoconiotic potency of coals. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01583-y

    Article  Google Scholar 

  • Kaneda, S., Angst, Š, & Frouz, J. (2020). Development of nutrient uptake by understory plant Arrhenatherum elatius and microbial biomass during primary succession of forest soils in post-mining land. Forests, 11(2), 247. https://doi.org/10.3390/f11020247

    Article  Google Scholar 

  • Kaneda, S., Frouz, J., Baldrian, P., Cajthaml, T., & Krištůfek, V. (2013). Does the addition of leaf litter affect soil respiration in the same way as addition of macrofauna excrements (of Bibio marci Diptera larvae) produced from the same litter? Applied Soil Ecology, 72, 7–13. https://doi.org/10.1016/j.apsoil.2013.05.011

    Article  Google Scholar 

  • Karu, H., Szava-Kovats, R., Pensa, M., & Kull, O. (2009). Carbon sequestration in a chronosequence of Scots pine stands in a reclaimed opencast oil shale mine. Canadian Journal of Forest Research, 39(8), 1507–1517. https://doi.org/10.1139/X09-069

    Article  CAS  Google Scholar 

  • Kaschuk, G., Alberton, O., & Hungria, M. (2010). Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving sustainability. Soil Biology & Biochemistry, 42(1), 1–13.

    CAS  Google Scholar 

  • Kashimura, N., Hayashi, J. I., Li, C. Z., Sathe, C., & Chiba, T. (2004). Evidence of poly-condensed aromatic rings in a Victorian brown coal. Fuel, 83(1), 97–107. https://doi.org/10.1016/S0016-2361(03)00243-6

    Article  CAS  Google Scholar 

  • Kavina, P., Jirásek, J., & Sivek, M. (2009). Some issues related to the energy sources in the Czech Republic. Energy Policy, 37(6), 2139–2142. https://doi.org/10.1016/j.enpol.2009.02.033

    Article  Google Scholar 

  • Khan, R., Parvez, M. S., Tamim, U., Das, S., Islam, M. A., Naher, K., Khan, M. H. R., Nahid, F., & Hossain, S. M. (2018). Assessment of rare earth elements, Th and U profile of a site for a potential coal based power plant by instrumental neutron activation analysis. Radiochimica Acta, 106(6), 515–524. https://doi.org/10.1515/ract-2017-2867

    Article  CAS  Google Scholar 

  • Kim, K. H., Jahan, S. A., Kabir, E., & Brown, R. J. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60, 71–80. https://doi.org/10.1016/j.envint.2013.07.019

    Article  CAS  Google Scholar 

  • Knoche, D., Rademacher, A., & Schlepphorst, R., (2019). Best practice report on environmental protection and post-mining land reclamation. Published Report of H2020 Project TRACER-Transition in Coal Intensive Regions.

  • Kořeny, (2012). Territorial mining limits in North Bohemia; modified by Andrew Barton, Charles University Environment Center, 2012. 13 November 2012. https://ustecko.zeleni.cz/nase-temata/tezebni-limity/

  • Korski, J., Osadnik, K. T., & Wyganowska, M. (2016). Reasons of problems of the polish hard coal mining in connection with restructuring changes in the period 1988–2014. Resources Policy, 48, 25–31. https://doi.org/10.1016/j.resourpol.2016.02.005

    Article  Google Scholar 

  • Kotalová, D., Száková, J., Sysalová, J., & Tlustoš, P. (2011). The contents of selected pollutants in soil and vegetation cover in urban district of Ostrava city affected by the industrial emissions. Ochrana Ovzduší, 23(3), 24–31. in Czech.

    Google Scholar 

  • Kou, J., Gan, Y., Lei, S., Meng, W., Feng, C., & Xiao, H. (2022). Soil health and ecological risk assessment in the typical coal mines on the Mongolian Plateau. SSRN Electronic Journal. https://doi.org/10.1016/j.ecolind.2022.109189

    Article  Google Scholar 

  • Křı́bek, B., Strnad, M., Boháček, Z., Sýkorová, I., Čejka, J., & Sobalı́k, Z. (1998). Geochemistry of Miocene lacustrine sediments from the Sokolov coal basin (Czech Republic). International Journal of Coal Geology, 37(3–4), 207–233. https://doi.org/10.1016/S0166-5162(98)00002-0

    Article  Google Scholar 

  • Krümmelbein, J., & Raab, T. (2012). Development of soil physical parameters in agricultural reclamation after brown coal mining within the first four years. Soil and Tillage Research, 125, 109–115. https://doi.org/10.1016/j.still.2012.06.013

    Article  Google Scholar 

  • Kumar, O. P., Gopinathan, P., Naik, A. S., Subramani, T., Singh, P. K., Sharma, A., Maity, S., & Saha, S. (2023). Characterization of lignite deposits of Barmer Basin, Rajasthan: insights from mineralogical and elemental analysis. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01649-x

    Article  Google Scholar 

  • Kuráž, V., Frouz, J., Kuráz, M., Makó, A., Shustr, V., Cejpek, J., Romanov, O. V., & Abakumov, E. V. (2012). Changes in some physical properties of soils in the chronosequence of self-overgrown dumps of the Sokolov quarry-dump complex, Czechia. Eurasian Soil Science, 45, 266–272. https://doi.org/10.1134/S1064229312030076

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration to mitigate climate change. Geoderma, 123(1–2), 1–22. https://doi.org/10.1016/j.geoderma.2004.01.032

    Article  CAS  Google Scholar 

  • Laughlin, D. C., Richardson, S. J., Wright, E. F., & Bellingham, P. J. (2015). Environmental filtering and positive plant litter feedback simultaneously explain correlations between leaf traits and soil fertility. Ecosystems, 18, 1269–1280. https://doi.org/10.1007/s10021-015-9899-0

    Article  Google Scholar 

  • Lawal, A. T. (2017). Polycyclic aromatic hydrocarbons. A review. Cogent Environmental Science, 3, 1339841. https://doi.org/10.1080/23311843.2017.1339841

    Article  CAS  Google Scholar 

  • Lehotský, L., Černoch, F., Osička, J., & Ocelík, P. (2019). When climate change is missing: Media discourse on coal mining in the Czech Republic. Energy Policy, 129, 774–786. https://doi.org/10.1016/j.enpol.2019.02.065

    Article  Google Scholar 

  • Leitgeb, J., Pecharová, E., & Kašparová, I., (2014). Large Reclamation Constructions in Suburbs of Sokolov Town in the Czech Republic. In Mine Planning and Equipment Selection: Proceedings of the 22nd MPES Conference, Dresden, Germany, 14th–19th October 2013 (pp. 813–821). Springer International Publishing. https://doi.org/10.1007/978-3-319-02678-7_79

  • Lelieveld, J., Klingmüller, K., Pozzer, A., Burnett, R. T., Haines, A., & Ramanathan, V. (2019). Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proceedings of the National Academy of Sciences of the United States of America, 116, 7192–7197. https://doi.org/10.1073/pnas.1819989116

    Article  CAS  Google Scholar 

  • Li, H., Xu, W., Dai, M., Wang, Z., Dong, X., & Fang, T. (2019). Assessing heavy metal pollution in paddy soil from coal mining area, Anhui, China. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-019-7659-x

    Article  Google Scholar 

  • Li, J., Li, F. D., & Liu, Q. (2017). PAHs behavior in surface water and groundwater of the Yellow River estuary: evidence from isotopes and hydrochemistry. Chemosphere, 178, 143–153. https://doi.org/10.1016/j.chemosphere.2017.03.052

    Article  CAS  Google Scholar 

  • Li, J. J., Zhou, X. M., Yan, J. X., Li, H. J., & He, J. Z. (2015). Effects of regenerating vegetation on soil enzyme activity and microbial structure in reclaimed soils on a surface coal mine site. Applied Soil Ecology, 87, 56–62.

    Google Scholar 

  • Li, L., Wu, J., Lu, J., Min, X., Xu, J., & Yang, L. (2018). Distribution, pollution, bioaccumulation, and ecological risks of trace elements in soils of the northeastern Qinghai-Tibet Plateau. Ecotoxicology, 166, 345–353. https://doi.org/10.1016/j.ecoenv.2018.09.110

    Article  CAS  Google Scholar 

  • Li, S., Lu, M., Wu, P., Zhu, S., Tie, C., Zhao, X., & Liang, H. (2023). Study on the variations of extractable polycyclic aromatic hydrocarbons in lignite and semi-coke. Fuel, 331, 125787. https://doi.org/10.1016/j.fuel.2022.125787

    Article  CAS  Google Scholar 

  • Lin, W., Wu, K., Lao, Z., Hu, W., Lin, B., Li, Y., Fan, H., & Hu, J. (2019). Assessment of trace metal contamination and ecological risk in the forest ecosystem of dexing mining area in northeast Jiangxi Province, China. Ecotoxicology and Environmental Safety, 167, 76–82. https://doi.org/10.1016/j.ecoenv.2018.10.001

    Article  CAS  Google Scholar 

  • Lipiec, J., & Hatano, R. (2003). Quantification of compaction effects on soil physical properties and crop growth. Geoderma, 116, 107–136. https://doi.org/10.1016/S0016-7061(03)00097-1

    Article  Google Scholar 

  • Liu, X., Bai, Z., Yu, Q., Cao, Y., & Zhou, W. (2017). Polycyclic aromatic hydrocarbons in the soil profiles (0–100 cm) from the industrial district of a large open-pit coal mine, China. RSC Advances, 7, 28029–28037. https://doi.org/10.1039/C7RA02484C

    Article  CAS  Google Scholar 

  • Lozano-García, B., & Muñoz-RojasParras-Alc’antara, M. L. (2017). Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 579, 1249–1259. https://doi.org/10.1016/j.scitotenv.2016.11.111

    Article  CAS  Google Scholar 

  • Ma, W., & Zhang, X. (2016). Effect of Pisha sandstone on water infiltration of different soils on the Chinese Loess Plateau. Journal of Arid Land, 8, 331–340. https://doi.org/10.1007/s40333-016-0122-8

    Article  Google Scholar 

  • Ma, X., Lu, Z., & Cheng, J. (2008). Ecological risk assessment of open coal mine area. Environmental Monitoring and Assessment, 147(1–3), 471–481. https://doi.org/10.1007/s10661-008-0215-8

    Article  CAS  Google Scholar 

  • Macdonald, S. E., Landhausser, S. M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D., & Quideau, S. (2015). Forest restoration following surface mining disturbance: Challenges and solutions. New Forests, 46, 703–732. https://doi.org/10.1007/s11056-015-9506-4

    Article  Google Scholar 

  • Maiti, S. K., & Ahirwal, J., (2019). Ecological restoration of coal mine degraded lands: topsoil management, pedogenesis, carbon sequestration, and mine pit limnology. In: Pandey, C., Vimal, B. K. (Eds.), Phytomanagement of polluted sites, market opportunities in sustainable phytoremediation, pp. 83–111. https://doi.org/10.1016/B978-0-12-813912-7.00003-X.

  • Maiti, S. K. (2013). Ecorestoration of the coalmine degraded lands. Springer. https://doi.org/10.1007/978-81-322-0851-8

    Book  Google Scholar 

  • McGarry, D., Brdge, B. J., & Radford, B. J. (2000). Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil and Tillage Research, 53(2), 105–115.

    Google Scholar 

  • Meek, B. D., Rechel, E. R., Carter, L. M., DeTar, W. R., & Urie, A. L. (1992). Infiltration rate of a sandy loam soil: Effects of traffic, tillage and plant roots. Soil Science Society of America Journal, 56, 908–913.

    Google Scholar 

  • Menge, D. N., Hedin, L. O., & Pacala, S. W. (2012). Nitrogen and phosphorus limitation over long-term ecosystem development in terrestrial ecosystems. PLoS ONE. https://doi.org/10.1371/journal.pone.0042045

    Article  Google Scholar 

  • Merilä, P., Malmivaara-Lämsä, M., Spetz, P., Stark, S., Vierikko, K., Derome, J., & Fritze, H. (2010). Soil organic matter quality as a link between microbial community structure and vegetation composition along a successional gradient in a boreal forest. Applied Soil Ecology, 46(2), 259–267. https://doi.org/10.1016/j.apsoil.2010.08.003

    Article  Google Scholar 

  • Milan, Š, Luboš, B., & Dimitrovský, K. K. (2006). Contents of potentially risk elements in natural and reclaimed soils of the Sokolov region. Soil and Water Research, 1(3), 99. https://doi.org/10.17221/6511-SWR

    Article  Google Scholar 

  • Mileusnić, M., Mapani, B. S., Kamona, A. F., Ružičić, S., Mapaure, I., & Chimwamurombe, P. M. (2014). Assessment of agricultural soil contamination by potentially toxic metals dispersed from improperly disposed tailings, Kombat mine, Namibia. Journal of Geochemical Exploration, 144, 409–420. https://doi.org/10.1016/j.gexplo.2014.01.009

    Article  CAS  Google Scholar 

  • Mudrák, O., Frouz, J., & Velichová, V. (2010). Understory vegetation in reclaimed and unreclaimed post-mining forest stands. Ecological Engineering, 36(6), 783–790. https://doi.org/10.1016/j.ecoleng.2010.02.003

    Article  Google Scholar 

  • Mukhopadhyay, S., Maiti, S. K., & Masto, R. E. (2013). Use of Reclaimed Mine Soil Index (RMSI) for screening of tree species for reclamation of coal mine degraded land. Ecological Engineering, 57, 133–142. https://doi.org/10.1016/j.ecoleng.2013.04.017

    Article  Google Scholar 

  • Mulková, M., Popelka, P., & Popelková, R. (2016). Black land: The mining landscape of the Ostrava-Karviná Region. In T. Pánek & J. Hradecký (Eds.), Landscapes and Landforms of the Czech Republic. World Geomorphological Landscapes. Springer. https://doi.org/10.1007/978-3-319-27537-6_25

    Chapter  Google Scholar 

  • Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: A review. Environmental Chemistry Letters, 8(3), 199–216. https://doi.org/10.1007/s10311-010-0297-8

    Article  CAS  Google Scholar 

  • Nemes, A. T. T. I. L. A., & Rawls, W. J. (2004). Soil texture and particle-size distribution as input to estimate soil hydraulic properties. Developments in Soil Science, 30, 47–70. https://doi.org/10.1016/S0166-2481(04)30004-8

    Article  Google Scholar 

  • Niu, S., Gao, L., & Zhao, J. (2017). Heavy metals in the soils and plants from a typical restored coal-mining area of Huainan coalfield, China. Environmental Monitoring and Assessment, 189, 484. https://doi.org/10.1007/s10661-017-6207-9

    Article  CAS  Google Scholar 

  • Osička, J., Kemmerzell, J., Zoll, M., Lehotský, L., Černoch, F., & Knodt, M. (2020). What’s next for the European coal heartland? Exploring the future of coal as presented in German, Polish and Czech press. Energy Research and Social Science, 61, 101316. https://doi.org/10.1016/j.erss.2019.101316

    Article  Google Scholar 

  • Ouyang, Z., Gao, L., & Yang, C. (2018). Distribution, sources and influence factors of polycyclic aromatic hydrocarbon at different depths of the soil and sediments of two typical coal mining subsidence areas in Huainan, China. Ecotoxicology and Environmental Safety, 163, 255–265. https://doi.org/10.1016/j.ecoenv.2018.07.024

    Article  CAS  Google Scholar 

  • Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2018). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. Journal of Environmental Radioactivity, 188, 100–107.

    CAS  Google Scholar 

  • Padula, A. M., Balmes, J. R., Eisen, E. A., Mann, J., Noth, E. M., Lurmann, F. W., Pratt, B., Tager, I. B., Nadeau, K., & Hammond, S. K. (2015). Ambient polycyclic aromatic hydrocarbons and pulmonary function in children. Journal of Exposure Science & Environmental Epidemiology, 25, 295–302. https://doi.org/10.1038/jes.2014.42

    Article  CAS  Google Scholar 

  • Panayiotopoulos, K. P., Papadopoulou, C. P., & Hatjiioannidou, A. (1994). Compaction and penetration resistance of an Alfisol and Entisol and their influence on root growth of maize seedlings. Soil and Tillage Research, 31(4), 323–337.

    Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2014). Coal mining activities change plant community structure due to air pollution and soil degradation. Ecotoxicology, 23, 1474–1483. https://doi.org/10.1007/s10646-014-1289-4

    Article  CAS  Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2015). Ecological risk assessment of soil contamination by trace elements around coal mining area. Journal of Soils and Sediments, 16, 159–168. https://doi.org/10.1007/s11368-015-1173-8

    Article  CAS  Google Scholar 

  • Pei, W., Yao, S., Knight, J. F., Dong, S., Pelletier, K., Rampi, L. P., Wang, Y., & Klassen, J. (2017). Mapping and detection of land-use change in a coal mining area using object-based image analysis. Environment and Earth Science, 76(3), 125.

    Google Scholar 

  • Pergl, J., Sádlo, J., Petrusek, A., Laštůvka, Z., Musil, J., Perglová, I., Šanda, R., Šefrová, H., Šíma, J., Vohralík, V., & Pyšek, P. (2016). Black, Grey and Watch Lists of alien species in the Czech Republic based on environmental impacts and management strategy. NeoBiota, 28, 1–37. https://doi.org/10.3897/neobiota.28.4824

    Article  Google Scholar 

  • Ponge, J. F. (2003). Humus forms in terrestrial ecosystems: A framework to biodiversity. Soil Biology and Biochemistry, 35(7), 935–945. https://doi.org/10.1016/S0038-0717(03)00149-4

    Article  CAS  Google Scholar 

  • Ponge, J. F. (2013). Plant–soil feedbacks mediated by humus forms: A review. Soil Biology and Biochemistry, 57, 1048–1060. https://doi.org/10.1016/j.soilbio.2012.07.019

    Article  CAS  Google Scholar 

  • Prach, K., Šebelíková, L., Řehounková, K., & del Moral, R. (2019). Possibilities and limitations of passive restoration of heavily disturbed sites. Landscape Research. https://doi.org/10.1080/01426397.2019.1593335

    Article  Google Scholar 

  • Puettmann, W., & Schaefer, R. G. (1990). Assessment of carbonization properties of coals by analysis of trapped hydrocarbons. Energy & Fuels, 4(4), 339–346. https://doi.org/10.1021/ef00022a001

    Article  CAS  Google Scholar 

  • Püttmann, W. (1988). Analysis of polycyclic aromatic hydrocarbons in solid sample material using a desorption device coupled to a GC/MS system. Chromatographia, 26, 171–177. https://doi.org/10.1007/BF02268146

    Article  Google Scholar 

  • Qin, N., He, W., Kong, X. Z., Liu, W. X., He, Q. S., Yang, B., Wang, Q. M., Yang, C., Jiang, Y. J., Jorgensen, S. E., Xu, F. L., & Zhao, X. L. (2014). Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water–SPM–sediment system of Lake Chaohu, China. Science of the Total Environment, 496, 414–423. https://doi.org/10.1016/j.scitotenv.2014.07.045

    Article  CAS  Google Scholar 

  • Rai, A. K., Paul, B., & Singh, G. (2010). Assessment of top soil quality in the vicinity of subsided area in Jharia coalfield, Dhanbad, Jharkhand. Report and Opinion, 2(9), 18–23.

    Google Scholar 

  • Rečka, L., & Ščasný, M. (2016). Impacts of carbon pricing, brown coal availability and gas cost on Czech energy system up to 2050. Energy, 108, 19–33. https://doi.org/10.1016/j.energy.2015.12.003

    Article  Google Scholar 

  • Rečka, L., & Ščasný, M. (2017). Impacts of reclassified Brown coal reserves on the energy system and deep decarbonisation target in the Czech Republic. Energies, 10, 1947. https://doi.org/10.3390/en10121947

    Article  Google Scholar 

  • Řehoř, M., & Ondráček, V. (2009). Methodology of restoration research in Czech Republic. World Academy of Science, Engineering and Technology, 3(8), 257–261.

    Google Scholar 

  • Řehounková, K., & Prach, K. (2008). Spontaneous vegetation succession in gravel–sand pits: A potential for restoration. Restoration Ecology, 16(2), 305–312. https://doi.org/10.1111/j.1526-100X.2007.00316.x

    Article  Google Scholar 

  • Remeš, J., & Šíša, R. (2007). Biological activity of anthropogenic soils after spoil-bank forest reclamation. Journal of Forest Science, 53(7), 299.

    Google Scholar 

  • Říha, M., Stoklasa, J., Lafarová, M., Dejmal, I., Marek, J., & Pakosta, P. (2005). Environmental mining limits in North Bohemian Lignite Region. Společnost Pro Krajinu.

    Google Scholar 

  • Říha, M., Stoklasa, J., Lafarová, M., Dejmal, I., Marek, J., Pakosta, P., & Beránek, K. (2011). The environmental mining limits in the North Bohemian Lignite Region. Společnost Pro Krajinu.

    Google Scholar 

  • Ritter, J. B., & Gardner, T. W. (1993). Hydrologic evolution of drainage basins disturbed by surface mining, central Pennsylvania. Geological Society of America Bulletin, 105(1), 101–115.

    Google Scholar 

  • Roberts, J. A., Daniels, W. L., Burger, J. A., & Bell, J. C. (1988). Early stages of mine soil genesis in a southwest Virginia spoil lithosequence. Soil Science Society of America Journal, 52(3), 716–723.

    Google Scholar 

  • Rodríguez-Liébana, J. A., Mingorance, M. D., & Peña, A. (2014). Pesticide mobility and leachate toxicity in two abandoned mine soils. Effect of organic amendments. The Science of the Total Environment, 497–498, 561–569. https://doi.org/10.1016/j.scitotenv.2014.08.010

    Article  CAS  Google Scholar 

  • Rouhani, A., Azimzadeh, H., Sotoudeh, A., & Ehdaei, A. (2022). Health risk assessment of heavy metals in archaeological soils of Tappe Rivi impacted by ancient anthropogenic activity. Chemistry Africa, 5(5), 1751–1764. https://doi.org/10.1007/s42250-022-00428-y

    Article  CAS  Google Scholar 

  • Rouhani, A., Makki, M., Hejcman, M., Shirzad, R., & Gusiatin, M. Z. (2023a). Risk assessment and spatial distribution of heavy metals with an emphasis on Antimony (Sb) in urban soil in Bojnourd, Iran. Sustainability, 15(4), 3495. https://doi.org/10.3390/su15043495

    Article  CAS  Google Scholar 

  • Rouhani, A., Shadloo, S., Naqibzadeh, A., Hejcman, M., & Derakhsh, M. (2023b). Pollution and health risk assessment of heavy metals in the soil around an open landfill site in a developing country (Kazerun, Iran). Chemistry Africa. https://doi.org/10.1007/s42250-023-00616-4

    Article  Google Scholar 

  • Růžek, L., Voříšek, K., & Sixta, J. (2001). Microbial biomass-C in reclaimed soil of the Rhineland (Germany) and the North Bohemian lignite mining areas (Czech Republic): Measured and predicted values. Restoration Ecology, 9(4), 370–377. https://doi.org/10.1046/j.1526-100X.2001.94006.x

    Article  Google Scholar 

  • Rychlíková, E., (2015). The air in the Ústí nad Labem Region, and the health of the population. Sub-Report for Project QJ1520307—Sustainable Forms of Management in an Anthropogenically Burdened Region. p. 12

  • Schafer, W. M., Nielsen, G. A., & Nettleton, W. D. (1980). Minesoil Genesis and Morphology in a Spoil Chronosequence in Montana. Soil Science Society of America Journal, 44(4), 802–807.

    Google Scholar 

  • Schulz, S., & Schwartzkopf, J., (2018). European lignite-mining regions in transition. Challenges in the Czech Republic and Germany, ISBN 978-80-88289-04-3 (digital only). https://cz.boell.org/sites/default/files/final_report_eng_online_kb.pdf.

  • Scullion, J., & Malinovszky, K. M. (2010). Soil factors affecting tree growth on former opencast coal land. Land Degradation and Development, 6(4), 239–249.

    Google Scholar 

  • Sedlacek, J., Tolaszová, J., Kříženecká, S., Bábek, O., & Zímová, K. (2020). Regional contamination history revealed in coal-mining-impacted Oxbow Lake sediments. Water, Air, & Soil Pollution, 231, 1–22. https://doi.org/10.1007/s11270-020-04583-1

    Article  CAS  Google Scholar 

  • Sena, K. L., Yeager, K. M., Barton, C. D., Lhotka, J. M., Bond, W. E., & Schindler, K. J. (2021). Development of mine soils in a chronosequence of forestry-reclaimed sites in eastern Kentucky. Minerals, 11(4), 422. https://doi.org/10.3390/min11040422

    Article  CAS  Google Scholar 

  • Sencindiver, J. C., & Ammons, J. T. (2000). Minesoil genesis and classification. Reclamation of Drastically Disturbed Lands, 41, 595–613. https://doi.org/10.2134/agronmonogr41.c23

    Article  CAS  Google Scholar 

  • Shi, G. L., Lou, L. Q., Zhang, S., Xia, X. W., & Cai, Q. S. (2013). Arsenic, copper, and zinc contamination in soil and wheat during coal mining, with assessment of health risks for the inhabitants of Huaibei, China. Environmental Science and Pollution Research International, 20(12), 8435–8445. https://doi.org/10.1007/s11356-013-1842-3

    Article  CAS  Google Scholar 

  • Shrestha, R. K., & Lal, R. (2006). Ecosystem carbon budgeting and soil carbon sequestration in reclaimed mine soil. Environment International, 32(6), 781–796. https://doi.org/10.1016/j.envint.2006.05.001

    Article  CAS  Google Scholar 

  • Shrestha, R. K., & Lal, R. (2008). Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant and Soil, 306, 249–260. https://doi.org/10.1007/s11104-008-9578-4

    Article  CAS  Google Scholar 

  • Sivek, M., Jirásek, J., Kavina, P., Vojnarová, M., Kurková, T., & Basova, A. B. (2020). Divorce after hundreds of years of marriage: Prospects for coal mining in the Czech Republic with regard to the European Union. Energy Policy, 142, 111524. https://doi.org/10.1016/j.enpol.2020.111524

    Article  Google Scholar 

  • Sivek, M., Vlček, T., Kavina, P., & Jirásek, J. (2017). Lifting lignite mining limits—Correction of the Czech Republic energy policy. Energy Sources, Part B: Economics, Planning, and Policy, 12, 519–525. https://doi.org/10.1080/15567249.2016.1219789

    Article  Google Scholar 

  • Skála, J., Boahen, F. A., Száková, J., Vácha, R., & Tlustoš, P. (2021). Arsenic and lead in soil: Impacts on element mobility and bioaccessibility. Environmental Geochemistry and Health, 44, 943–959. https://doi.org/10.1007/s10653-021-01008-8

    Article  CAS  Google Scholar 

  • Smith, S.E., & Read, D.J., (2008). Mycorrhizal Symbiosis (3rd ed., pp. 1–787). Elsevier.

  • Šnajdr, J., Dobiášová, P., Urbanová, M., Petránková, M., Cajthaml, T., Frouz, J., & Baldrian, P. (2013). Dominant trees affect microbial community composition and activity in post-mining afforested soils. Soil Biology and Biochemistry, 56, 105–115. https://doi.org/10.1016/j.soilbio.2012.05.004

    Article  CAS  Google Scholar 

  • Song, S., Peng, R., Wang, Y., Cheng, X., Niu, R., & Ruan, H. (2023). Spatial distribution characteristics and risk assessment of soil heavy metal pollution around typical coal gangue hill located in Fengfeng Mining area. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01530-x

    Article  Google Scholar 

  • Sonneveld, M. P. W., Backx, M. A. H. M., & Bouma, J. (2003). Simulation of soil water regimes including pedotransfer functions and land-use related preferential flow. Geoderma, 112(1–2), 97–110. https://doi.org/10.1016/S0016-7061(02)00298-7

    Article  Google Scholar 

  • Šourková, M., Frouz, J., & Šantrůčková, H. (2005). Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma, 124, 203–214. https://doi.org/10.1016/j.geoderma.2004.05.001

    Article  CAS  Google Scholar 

  • Spasić, M., Drábek, O., Tejnecký, V., Vacek, O., & Borůvka, L. (2020). Physico-chemical properties of lignite mine reclaimed soil formed under 19 different tree species in Sokolov, Czech Republic. Mechanization in Agriculture & Conserving of the Resources, 66(4), 134–135.

    Google Scholar 

  • Sram, R.J., (2012). Impact of air pollution on health of children—Czech experience. https://doi.org/10.5339/qproc.2012.mutagens.3.41

  • Starý, J., Sitenský, I., Mašek, D., Hodková, T., Vaněček, M., Novák, J., & Kavina, P., (2017). Mineral commodity summaries of the Czech Republic 2017. Prague.

  • Stout, S. A., & Emsbo-Mattingly, S. D. (2008). Concentration and character of PAHs and other hydrocarbons in coals of varying rank–implications for environmental studies of soils and sediments containing particulate coal. Organic Geochemistry, 39(7), 801–819. https://doi.org/10.1016/j.orggeochem.2008.04.017

    Article  CAS  Google Scholar 

  • Suchara, I., & Sucharová, J. (2002). Distribution of Sulphur and heavy metals in forest floor humus of the Czech Republic. Water, Air, and Soil Pollution, 136, 289–316. https://doi.org/10.1023/A:1015235924991

    Article  CAS  Google Scholar 

  • Sun, D., Müllerová, V., Ardestani, M. M., & Frouz, J. (2019). Nitrogen fertilization and its legacy have inconsistent and often negative effect on plant growth in undeveloped post mining soils. Soil and Tillage Research, 195, 104380. https://doi.org/10.1016/j.still.2019.104380

    Article  Google Scholar 

  • Tang, Q., Chang, L., Wang, Q. J., Miao, C., Zhang, Q., Zheng, L., Zhou, Z., Ji, Q., Chen, L., & Zhang, H. (2023). Distribution and accumulation of cadmium in soil under wheat-cultivation system and human health risk assessment in coal mining area of China. Ecotoxicology and Environmental Safety, 253, 114688. https://doi.org/10.1016/j.ecoenv.2023.114688

    Article  CAS  Google Scholar 

  • Thomas, K., Sencindiver, J., Skousen, J., & Gorman, J., (2000). Soil development on a mountaintop removal mine in southern West Virginia. In: Proceedings of 2000 Annual Meeting of the American Society for Surface Mining and Reclamation, Tampa, FL, pp. 546–556.

  • Tomiyama, S., Igarashi, T., Tabelin, C. B., Tangviroon, P., & Li, H. (2020). Modeling of the groundwater flow system in excavated areas of an abandoned mine. Journal of Contaminant Hydrology. https://doi.org/10.1016/j.jconhyd.2020.103617

    Article  Google Scholar 

  • Tuo, J., & Philp, R. P. (2005). Saturated and aromatic diterpenoids and triterpenoids in Eocene coals and mudstones from China. Applied Geochemistry, 20(2), 367–381. https://doi.org/10.1016/j.apgeochem.2004.08.005

    Article  CAS  Google Scholar 

  • Urbanová, M., Kopecký, J., Valášková, V., Sagova-Mareckova, M., Elhottová, D., Kyselková, M., Moënne-Loccoz, Y., & Baldrian, P. (2011). Development of bacterial community during spontaneous succession on spoil heaps after brown coal mining. FEMS Microbiology Ecology, 78(1), 59–69. https://doi.org/10.1111/j.1574-6941.2011.01164.x

    Article  CAS  Google Scholar 

  • Ussiri, D. A. N., Jacinthe, P.-A., & Lal, R. (2014). Methods for determination of coal carbon in reclaimed minesoils: A review. Geoderma, 214–215, 155–167.

    Google Scholar 

  • Vácha, R., Sáňka, M., Hauptman, I., Zimová, M., & Čechmánková, J. (2015b). Assessment of limit values of risk elements and persistent organic pollutants in soil for Czech legislation. Plant, Soil and Environment, 60(5), 191–197.

    Google Scholar 

  • Vácha, R., Skála, J., Čechmánková, J., Horváthová, V., & Hladík, J. (2015a). Toxic elements and persistent organic pollutants derived from industrial emissions in agricultural soils of the Northern Czech Republic. Journal of Soils and Sediments, 15, 1813–1824. https://doi.org/10.1007/s11368-015-1120-8

    Article  CAS  Google Scholar 

  • Vicentini, F., Hendrychova, M., Tajovský, K., Pižl, V., & Frouz, J. (2020). The effect of topography on long-term spontaneous development of soil and woody cover on graded and untreated overburden. Forests, 11(5), 602. https://doi.org/10.3390/f11050602

    Article  Google Scholar 

  • Vinduskova, O., & Frouz, J. (2013). Soil carbon accumulation after open-cast coal and oil shale mining in northern hemisphere: A quantitative review. Environment and Earth Science, 69, 1685–1698. https://doi.org/10.1007/s12665-012-2004-5

    Article  CAS  Google Scholar 

  • Vitousek, P. M., & Field, C. B. (1999). Ecosystem constraints to symbiotic nitrogen fixers: a simple model and its implications. In: Townsend, A.R. (Ed.), New perspectives on nitrogen cycling in the temperate and tropical Americas. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4645-6_9

  • Vlček, T., & Jirušek, M., (2015). Key factors that drive the Czech Republic coal industry. Coal Int. 263.

  • Vlček, T., & Černoch, F. (2012). Energy sector of the Czech Republic. Masarykova univerzita.

    Google Scholar 

  • Vöröš, D., DíazSomoano, M., Geršlová, E., Sýkorová, I., & Suárez-Ruiz, I. (2018). Mercury contamination of stream sediments in the North Bohemian Coal District (Czech Republic): Mercury speciation and the role of organic matter. Chemosphere, 211, 664–673. https://doi.org/10.1016/j.chemosphere.2018.07.196

    Article  CAS  Google Scholar 

  • Vöröš, D., Geršlová, E., Nývlt, D., Geršl, M., & Kuta, J. (2019). Assessment of geogenic input into Bilina stream sediments (Czech Republic). Environmental Monitoring and Assessment, 191, 1–12. https://doi.org/10.1007/s10661-019-7255-0

    Article  CAS  Google Scholar 

  • Vráblík, P., Wildova, E., & Vrablikova, J. (2017). The effect of Brown coal mining on the environment and health of the population in northern bohemia (Czech republic). International Journal of Clean Coal and Energy, 6(1), 1–13. https://doi.org/10.4236/ijcce.2017.61001

    Article  CAS  Google Scholar 

  • Vrablikova, J., Wildova, E., & Vrablik, P. (2016). Sustainable development and restoring the landscape after coal mining in the northern part of the Czech Republic. Journal of Environmental Protection, 7(11), 1483–1496. https://doi.org/10.4236/jep.2016.711125

    Article  Google Scholar 

  • Vrbová, M., & Štýs, S. (2008). 60 years of land reclamation after opencast coal mining—a success story of Czech reclamation work. Metal Mine, 10, 23–27.

    Google Scholar 

  • Wahsha, M., Nadimi-Goki, M., & Bini, C. (2016). Land contamination by toxic elements in abandoned mine areas in Italy. Journal of Soils and Sediments, 16, 1300–1305. https://doi.org/10.1007/s11368-015-1151-1

    Article  CAS  Google Scholar 

  • Wali, M. K. (1999). Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant and Soil, 213(1), 195–220.

    CAS  Google Scholar 

  • Walker, S. E., Dickhut, R. M., Chisholm-Brause, C., Sylva, S., & Reddy, C. M. (2005). Molecular and isotopic identification of PAH sources in a highly industrialized urban estuary. Organic Geochemistry, 36(4), 619–632. https://doi.org/10.1016/j.orggeochem.2004.10.012

    Article  CAS  Google Scholar 

  • Walmsley, A., Vachová, P., & Hlava, J. (2019). Tree species identity governs the soil macrofauna community composition and soil development at reclaimed post-mining sites on calcium-rich clays. European Journal of Forest Research, 138, 753–761. https://doi.org/10.1007/s10342-019-01202-5

    Article  CAS  Google Scholar 

  • Wang, J., Mi, W. K., Song, P. P., Xie, H., Zhu, L. S., & Wang, J. H. (2018). Cultivation ages effect on soil physicochemical properties and heavy metal accumulation in greenhouse soils. Chinese Geographical Science, 28(4), 717–726. https://doi.org/10.1007/s11769-018-0980-4

    Article  Google Scholar 

  • Wang, Z., Feyen, J., van Genuchten, M. T., & Nielsen, D. R. (1998). Air entrapment effects on infiltration rate and flow instability. Water Resources Research, 34(2), 213–222. https://doi.org/10.1029/97WR02804

    Article  Google Scholar 

  • Wardle, D. A., Bardgett, R. D., Klironomos, J. N., Setala, H., van der Putten, W. H., & Wall, D. H. (2004). Ecological linkages between aboveground and belowground biota. Science, 304, 1629–1633.

    CAS  Google Scholar 

  • Waterhouse, B. R., Adair, K. L., Boyer, S., & Wratten, S. D. (2014). Advanced mine restoration protocols facilitate early recovery of soil microbial biomass, activity and functional diversity. Basic and Applied Ecology, 15(7), 599–606. https://doi.org/10.1016/j.baae.2014.09.001

    Article  Google Scholar 

  • Weiss, J. S., & Razem, A. C. (1984). Simulation of ground-water flow in a mined watershed in eastern Ohio. Groundwater, 22(5), 549–560.

    Google Scholar 

  • Wood, C. W., & Pettry, D. E. (1989). Initial pedogenic progression in a drastically disturbed prime farmland soil. Soil Science, 147(3), 196–207.

    CAS  Google Scholar 

  • Woś, B., Nezhad, M. T. K., Mustafa, A., Pietrzykowski, M., & Frouz, J. (2023). Soil carbon storage in unreclaimed post mining sites estimated by a chronosequence approach and comparison with historical data. CATENA, 220, 106664. https://doi.org/10.1016/j.catena.2022.106664

    Article  CAS  Google Scholar 

  • Wuana, R.A., & Okieimen, F.E., (2011). Heavy metals in contaminated soils—A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol., 402647.

  • Yakovleva, E. V., Gabov, D. N., Beznosikov, V. A., & Kondratenok, B. M. (2016). Accumulation of polycyclic aromatic hydrocarbons in soils and plants of the tundra zone under the impact of coal-mining industry. Eurasian Soil Science, 49, 1319–1328. https://doi.org/10.1134/S1064229316090143

    Article  CAS  Google Scholar 

  • Yang, J., Zhang, M., Li, X., & Gao, L. (2011). Migration law of heavy metals in coal Gangue—Soil system in mining reclamation Area. Advances in Computer Science, Intelligent System and Environment. https://doi.org/10.1007/978-3-642-23753-9_108

    Article  Google Scholar 

  • Yang, Y., Ligouis, B., Pies, C., Grathwohl, P., & Hofmann, T. (2008). Occurrence of coal and coal-derived particle-bound polycyclic aromatic hydrocarbons (PAHs) in a river floodplain soil. Environmental Pollution, 151(1), 121–129. https://doi.org/10.1016/j.envpol.2007.02.020

    Article  CAS  Google Scholar 

  • Yao, D., Meng, J., & Zhang, Z. (2010). Heavy metal pollution and potential ecological risk in reclaimed soils in Huainan mining area. Journal of Coal Science and Engineering (china), 16, 316–319. https://doi.org/10.1007/s12404-010-0319-y

    Article  Google Scholar 

  • Zádrapová, D., Titěra, A., Száková, J., Čadková, Z., Cudlín, O., Najmanová, J., & Tlustoš, P. (2019). Mobility and bioaccessibility of risk elements in the area affected by the long-term opencast coal mining. Journal of Environmental Science and Health, Part A, 54(12), 1159–1169. https://doi.org/10.1080/10934529.2019.1633854

    Article  CAS  Google Scholar 

  • Zeng, S., Ma, J., Ren, Y., Liu, G. J., Zhang, Q., & Chen, F. (2019). Assessing the spatial distribution of soil PAHs and their relationship with anthropogenic activities at a national scale. International Journal of Environmental Research and Public Health, 16(24), 4928. https://doi.org/10.3390/ijerph16244928

    Article  CAS  Google Scholar 

  • Zhang, J., Gu, H., Chen, S., Ai, W., Dang, Y., Ai, S., & Li, Z. (2023). Assessment of heavy metal pollution and preschool children health risk in urban street dusts from different functional areas in a typical industrial and mining city, NW China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01623-7

    Article  Google Scholar 

  • Zhang, J., Liu, F., Huang, H., Wang, R., & Xu, B. (2020). Occurrence, risk and influencing factors of polycyclic aromatic hydrocarbons in surface soils from a large-scale coal mine, Huainan, China. Ecotoxicology and Environmental Safety, 192, 110269. https://doi.org/10.1016/j.ecoenv.2020.110269

    Article  CAS  Google Scholar 

  • Zhen, Q., Ma, W., Li, M., He, H., Zhang, X., & Wang, Y. (2015). Effects of vegetation and physicochemical properties on solute transport in reclaimed soil at an opencast coal mine site on the Loess Plateau, China. CATENA, 133, 403–411.

    CAS  Google Scholar 

  • Zipper, C. E., Burger, J. A., Skousen, J. G., Angel, P. N., Barton, C. D., Davis, V., & Franklin, J. A. (2011). Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environmental Management, 47, 751–765. https://doi.org/10.1007/s00267-011-9670-z

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

AR helped in conceptualization, methodology, investigation, visualization, writing—original draft, writing—review & editing. MZG and MH contributed to conceptualization, writing—review & editing. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Abdulmannan Rouhani.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rouhani, A., Gusiatin, M.Z. & Hejcman, M. An overview of the impacts of coal mining and processing on soil: assessment, monitoring, and challenges in the Czech Republic. Environ Geochem Health 45, 7459–7490 (2023). https://doi.org/10.1007/s10653-023-01700-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01700-x

Keywords

Navigation