Skip to main content

Advertisement

Log in

Trace element contamination in soils surrounding the open-cast coal mines of eastern Raniganj basin, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Trace element pollution of soils surrounding coal-mining areas affects the health of local communities. The increasing coal-mining and associated activities in the Raniganj basin (east India) have led to increased soil concentration of certain trace elements. To quantify the elevated trace element (TE) concentrations in the soil surrounding coal-mining areas, 83 surface soil, coal, and shale samples were collected from open-cast mining areas of the eastern Raniganj basin. The soils present are sandy silt, silty sand, and silty in nature, but almost no clay. They are acidic (pH = 4.3) to slightly alkaline (pH = 7.9) with a mean electrical conductivity (EC) of 340.45 µS/cm and a mean total organic carbon (TOC) of 1.80%. The northern and western parts of the study area were found to be highly polluted by certain metallic trace elements. The relevant environmental indices, geoaccumulation index (Igeo), contamination factors (CF), enrichment factors (EF), and pollution load index (PLI) were calculated and assessed. Analysis revealed that Cr was highly enriched in these soil samples, followed by Pb, Co, Cu, Cd, Fe, Ni, Mn, Zn, As, and Al. Geostatistical analyses (correlation coefficients and principal component analysis) indicated that the occurrence of some trace elements (Al, Cd, Co, Cu, Fe, Mn, Ni, and Zn) is most likely linked to the various coal-mining operations in the study area. However, the anomalous Cr and Pb distributions are likely influenced by other anthropogenic, mainly industrial, inputs besides coal mining. These results justify the adoption of rigorous soil monitoring programs in the vicinity of coal-mining areas, to identify pollution hotspots and to develop strategies to reduce or mitigate such environmentally damaging pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The authors confirm that all the data collected in this work have been added to the paper and in its supplementary materials.

References

  • Alloway, B. J. (Ed.). (2012). Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Springer Science & Business Media.

    Google Scholar 

  • ASTM. (2011). ASTM D2013–2013M: Standard practice for preparing coal samples for analysis.

  • Bandyopadhyay, S., & Maiti, S. K. (2019). Heavy metals distribution in Eucalyptus tree in 30 years old reclaimed overburden dumps. In AIP Conference Proceedings, 2091(1), 020008.

    Article  Google Scholar 

  • Bartlett, M. S. (1950). Tests of significance in factor analysis. British journal of psychology, 3, 77–85.

    Google Scholar 

  • Bhalerao, S. A., & Sharma, A. S. (2015). Chromium: As an Environmental Pollutant. International Journal of Current Microbiology and Applied Sciences, 4(4), 732–746.

    CAS  Google Scholar 

  • Bhattacharyya, T., Sarkar, D., Sehgal, J. L., Velayutham, M., Gajbhiye, K. S., Nagar, A. P., & Nimkhedkar, S. S. (2009). Soil taxonomic database of India and the states (1:250, 000 scale). Nagpur, India: NBSS & LUP.

    Google Scholar 

  • Binh, N. T. L., Hoang, N. T., Truc, N. T. T., Khang, V. D., & Le, H. A. (2021). Estimating the possibility of lead contamination in soil surface due to lead deposition in atmosphere. Journal of Nanomaterials. https://doi.org/10.1155/2021/5586951

    Article  Google Scholar 

  • Biswas, A., Hendry, M. J., Essilfie-Dughan, J., Day, S., Villeneuve, S. A., & Barbour, S. L. (2022). Geochemistry of zinc and cadmium in coal waste rock, Elk Valley, British Columbia Canada. Applied Geochemistry, 136, 105148. https://doi.org/10.1016/j.apgeochem.2021.105148

    Article  CAS  Google Scholar 

  • Bu, Q., Li, Q., Zhang, H., Cao, H., Gong, W., Zhang, X., Ling, K., & Cao, Y. (2020). Concentrations, spatial distributions, and sources of heavy metals in surface soils of the coal mining city Wuhai, China. Journal of Chemistry. https://doi.org/10.1155/2020/4705954

    Article  Google Scholar 

  • Callender, E. (2005). Heavy metals in the environment. In B. S. Lollar (Ed.), Environmental Geochemistry (Vol. 9, pp. 67–106). Elsevier.

    Google Scholar 

  • Cao, H. C., Luan, Z. Q., Wang, J. D., & Zhang, X. L. (2009). Potential ecological risk of cadmium, lead and arsenic in agricultural black soil in Jilin Province, China. Stochastic Environmental Research and Risk Assessment, 23(1), 57–64. https://doi.org/10.1007/s00477-007-0195-1

    Article  Google Scholar 

  • Chadwick, M. J., Highton, N. H., & Lindman, N. (Eds.). (2013). Environmental impacts of coal mining & utilization: a complete revision of environmental implications of expanded coal utilization. Elsevier.

    Google Scholar 

  • Chatterjee, M. V. S. F. E., Silva Filho, E. V., Sarkar, S. K., Sella, S. M., Bhattacharya, A., Satpathy, K. K., Prasad, M. V. R., Chakraborty, S., & Bhattacharya, B. D. (2007). Distribution and possible source of trace elements in the sediment cores of a tropical macrotidal estuary and their ecotoxicological significance. Environment International, 33(3), 346–356. https://doi.org/10.1016/j.envint.2006.11.013

    Article  CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., & Wang, J. (2015). Contamination features and health risk of soil heavy metals in China. Science of the Total Environment, 512, 143–153. https://doi.org/10.1016/j.scitotenv.2015.01.025

    Article  CAS  Google Scholar 

  • Chen, Y. N., & Ma, J. H. (2016). Evaluation of heavy metal pollution and health risk of surface dust in a city of henan province. Journal of Environmental Sciences, 36, 3017–3026. (In Chinese).

    CAS  Google Scholar 

  • Dai, S., Finkelman, R. B., French, D., Hower, J. C., Graham, I. T., & Zhao, F. (2021). Modes of occurrence of elements in coal: A critical evaluation. Earth-Science Reviews, 222, 103815. https://doi.org/10.1016/j.earscirev.2021.103815

    Article  CAS  Google Scholar 

  • Das, S. K., & Chakrapani, G. J. (2011). Assessment of trace metal toxicity in soils of Raniganj Coalfield, India. Environmental Monitoring and Assessment, 177, 63–71. https://doi.org/10.1007/s10661-010-1618-x

    Article  CAS  Google Scholar 

  • Day, W. H. E., & Edelsbrunner, H. (1984). Efficient algorithms for agglomerative hierarchical clustering methods. Journal of Classification, 1, 7–24. https://doi.org/10.1007/BF01890115

    Article  Google Scholar 

  • Dlamini, H., Mahlambi, P., & Mngadi, S. (2022). Validation of microwave-assisted digestion and Inductive coupled plasma-mass spectrometer for the determination of trace metals in the soil around Darvill sludgeland and their environmental complications. Soil and Sediment Contamination: An International Journal, 1–15.

  • Duan, P., Wang, W., Liu, X., Qian, F., Sang, S., & Xu, S. (2017). Distribution of As, Hg and other trace elements in different size and density fractions of the Reshuihe high-sulfur coal, Yunnan Province, China. International Journal of Coal Geology, 173, 129–141. https://doi.org/10.1016/j.coal.2017.02.013

    Article  CAS  Google Scholar 

  • Duce, R. A., Hoffman, G. L., Ray, B. J., Fletcher, I. S., Wallace, G. T., Fasching, J. L., Piotrowicz, S. R., Walsh, P. R., Hoffman, E. J., Miller, J. M., & Hoppter, J. L. (1976). Trace metals in the marine atmosphere: sources and fluxes. In H. Windom & R. Duce (Eds.), Marine Pollutant Transfer (pp. 77–119). Lexington, Mass: Heath.

    Google Scholar 

  • Finkelman, R. B. (1994). Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Processing Technology, 39(1–3), 21–34. https://doi.org/10.1016/0378-3820(94)90169-4

    Article  CAS  Google Scholar 

  • Finkelman, R. B. (1995). Modes of occurrence of environmentally-sensitive trace elements in coal. Environmental aspects of trace elements in coal (pp. 24–50). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Finkelman, R. B., Palmer, C. A., & Wang, P. (2018). Quantification of the modes of occurrence of 42 elements in coal. International Journal of Coal Geology, 185, 138–160. https://doi.org/10.1016/j.coal.2017.09.005

    Article  CAS  Google Scholar 

  • Finkelman, R. B., & Tian, L. (2018). The health impacts of coal use in China. International Geology Review, 60(5–6), 579–589. https://doi.org/10.1080/00206814.2017.1335624

    Article  Google Scholar 

  • Forgy, E. W. (1965). Cluster analysis of multivariate data: Efficiency versus interpretability of classifications. Biometrics, 21(3), 768–769.

    Google Scholar 

  • Gaudette, H. E., Flight, W. R., Toner, L., & Folger, D. W. (1974). An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Research, 44(1), 249–253. https://doi.org/10.1306/74D729D7-2B21-11D7-8648000102C1865D

    Article  CAS  Google Scholar 

  • Gee, E. R. (1932). The geology and coal resources of the Raniganj coalfield. Central Publication Branch.

    Google Scholar 

  • Gholizadeh, A., Borůvka, L., Vašát, R., Saberioon, M., Klement, A., Kratina, J., Tejnecký, V., & Drábek, O. (2015). Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy: A case study. PLoS One, 10(2), e0117457. https://doi.org/10.1371/journal.pone.0117457

    Article  CAS  Google Scholar 

  • Ghosh, S. C. (2002). The raniganj coal basin: An example of an Indian Gondwana rift. Sedimentary Geology, 147(1–2), 155–176.

    Article  Google Scholar 

  • Gopal, V., Krishnamurthy, R. R., Chakraborty, P., Magesh, N. S., & Jayaprakash, M. (2019). Trace element contamination in marine sediments along the southeast Indian shelf following Cyclone Gaja. Marine Pollution Bulletin, 149, 110520. https://doi.org/10.1016/j.marpolbul.2019.110520

    Article  CAS  Google Scholar 

  • Gopal, V., Krishnamurthy, R. R., Sreeshma, T., Chakraborty, P., Nathan, C. S., Kalaivanan, R., Anshu, R., Magesh, N. S., & Jayaprakash, M. (2021). Effect of a tropical cyclone on the distribution of heavy metals in the marine sediments off Kameswaram, Southeast coast of India. Marine Pollution Bulletin, 171, 112741. https://doi.org/10.1016/j.marpolbul.2021.112741

    Article  CAS  Google Scholar 

  • Gopinathan, P., Santosh, M. S., Dileepkumar, V. G., Subramani, T., Reddy, R., Masto, R. E., & Maity, S. (2022a). Geochemical, mineralogical and toxicological characteristics of coal fly ash and its environmental impacts. Chemosphere, 307, 135710.

    Article  CAS  Google Scholar 

  • Gopinathan, P., Singh, A. K., Singh, P. K., & Jha, M. (2022b). Sulphur in Jharia and Raniganj coalfields: Chemical fractionation and its environmental implications. Environmental Research, 204, 112382.

    Article  CAS  Google Scholar 

  • GSI. (2003). Coal Resources of West Bengal. R.K. Dutta compiled. In Dutt A. B., (Eds.), Bulletin of Geological Survey of India, Series A 45, pp. 1–109.

  • Gürdal, G. (2011). Abundances and modes of occurrence of trace elements in the Çan coals (Miocene). Çanakkale-Turkey. International Journal of Coal Geology, 87(2), 157–173. https://doi.org/10.1016/j.coal.2011.06.008

    Article  CAS  Google Scholar 

  • Håkanson, L. (1980). An ecological risk index for aquatic pollution control. A Sedimentological Approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8

    Article  Google Scholar 

  • Hall, S. J., & Thompson, A. (2022). What do relationships between extractable metals and soil organic carbon concentrations mean? Soil Science Society of America Journal, 86(2), 195–208. https://doi.org/10.1002/saj2.20343

    Article  CAS  Google Scholar 

  • Harikumar, P. S., Nasir, U. P., & Rahman, M. P. (2009). Distribution of heavy metals in the core sediments of a tropical wetland system. International Journal of Environmental Science & Technology, 6(2), 225–232. https://doi.org/10.1007/BF03327626

    Article  CAS  Google Scholar 

  • Haynes, R. J. (2019). What effect does liming have on silicon availability in agricultural soils? Geoderma, 337, 375–383. https://doi.org/10.1016/j.geoderma.2018.09.026

    Article  CAS  Google Scholar 

  • He, Y., Han, X., Ge, J., & Wang, L. (2022). Multivariate statistical analysis of potentially toxic elements in soils under different land uses: Spatial relationship, ecological risk assessment, and source identification. Environmental Geochemistry and Health, 44(3), 847–860. https://doi.org/10.1007/s10653-021-00992-1

    Article  CAS  Google Scholar 

  • Hurisso, T. T., Culman, S. W., Zone, P., & Sharma, S. (2018). Absolute values and precision of emerging soil health indicators as affected by soil sieve size. Communications in Soil Science and Plant Analysis, 49(15), 1934–1942.

    Article  CAS  Google Scholar 

  • Ingram, R. L. (1970). Procedures in Sedimentary Petrology (pp. 49–67). New York: Wiley.

    Google Scholar 

  • Israr, M. A., Abbas, Q., Haq, S. U., & Nadeem, A. (2022). Analysis of carbon contents and heavy metals in coal samples using calibration-free LIBS technique. Journal of Spectroscopy. https://doi.org/10.1155/2022/3328477

    Article  Google Scholar 

  • Kaiser, H. F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401–415.

    Article  Google Scholar 

  • Kalpana, G., Shanmugasundharam, A., Nethaji, S., Viswam, A., Kalaivanan, R., Gopal, V., & Jayaprakash, M. (2016). Evaluation of total trace metal (TTMs) enrichment from estuarine sediments of Uppanar, southeast coast of India. Arabian Journal of Geosciences, 9(1), 1–14. https://doi.org/10.1007/s12517-015-2048-4

    Article  CAS  Google Scholar 

  • Kim, H. Y. (2013). Statistical notes for clinical researchers: Assessing normal distribution (2) using skewness and kurtosis. Restorative Dentistry & Endodontics, 38(1), 52–54. https://doi.org/10.5395/rde.2013.38.1.52

    Article  Google Scholar 

  • Korzeniowska, J., & Krąż, P. (2020). Heavy metals content in the soils of the Tatra National Park near Lake Morskie Oko and Kasprowy Wierch—A case study (Tatra Mts, Central Europe). Minerals, 10(12), 1120. https://doi.org/10.3390/min10121120

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–A review. Environmental Geochemistry and Health, 40(6), 2395–2420. https://doi.org/10.1007/s10653-018-0106-z

    Article  CAS  Google Scholar 

  • Kumar, A., Usmani, Z., Ahirwal, J., & Rani, P. (2019). Phytomanagement of chromium contaminated brown fields. In V. C. Pandey & K. Bauddh (Eds.), Phytomanagement of Polluted Sites (pp. 447–69). Elsevier.

    Chapter  Google Scholar 

  • Li, F., Li, X., Hou, L., & Shao, A. (2018a). Impact of the coal mining on the spatial distribution of potentially toxic metals in farmland tillage soil. Scientific Reports, 8(1), 1–10. https://doi.org/10.1038/s41598-018-33132-4

    Article  CAS  Google Scholar 

  • Li, K., Gu, Y., Li, M., Zhao, L., Ding, J., Lun, Z., & Tian, W. (2018b). Spatial analysis, source identification and risk assessment of heavy metals in a coal mining area in Henan, Central China. International Biodeterioration & Biodegradation, 128, 148–154. https://doi.org/10.1016/j.ibiod.2017.03.026

    Article  CAS  Google Scholar 

  • Lu, X., Wang, L., Li, L. Y., Lei, K., Huang, L., & Kang, D. (2010). Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. Journal of Hazardous Materials, 173(1–3), 744–749. https://doi.org/10.1016/j.jhazmat.2009.09.001

    Article  CAS  Google Scholar 

  • Lv, J., & Liu, Y. (2019). An integrated approach to identify quantitative sources and hazardous areas of heavy metals in soils. Science of the Total Environment, 646, 19–28. https://doi.org/10.1016/j.scitotenv.2018.07.257

    Article  CAS  Google Scholar 

  • Maiti, S. K. (2007). Bioreclamation of coalmine overburden dumps—with special empasis on micronutrients and heavy metals accumulation in tree species. Environmental Monitoring and Assessment, 125(1), 111–122. https://doi.org/10.1007/s10661-006-9244-3

    Article  CAS  Google Scholar 

  • Maiti, S. K. (2013). Ecology and ecosystem in mine-degraded land. Ecorestoration of the coalmine degraded lands (pp. 21–37). India: Springer.

    Chapter  Google Scholar 

  • Manna, A., & Maiti, R. (2018). Geochemical contamination in the mine affected soil of Raniganj Coalfield–A river basin scale assessment. Geoscience Frontiers, 9(5), 1577–1590.

    Article  CAS  Google Scholar 

  • Masto, R. E., Ram, L. C., George, J., Selvi, V. A., Sinha, A. K., Verma, S. K., & Rout, T. K. (2011). Status of some soil trace elements and their potential human health risks around a coal beneficiation plant. International Journal of Coal Preparation and Utilization, 31(2), 61–77. https://doi.org/10.1080/19392699.2010.534746

    Article  CAS  Google Scholar 

  • Masto, R. E., Sheik, S., Nehru, G., Selvi, V. A., George, J., & Ram, L. C. (2015). Assessment of environmental soil quality around Sonepur Bazari mine of Raniganj coalfield. India. Solid Earth, 6(3), 811–821. https://doi.org/10.5194/se-6-811-2015

    Article  Google Scholar 

  • Maya, M., Musekiwa, C., Mthembi, P., & Crowley, M. (2015). Remote sensing and geochemistry techniques for the assessment of coal mining pollution, Emalahleni (Witbank). Mpumalanga. South African Journal of Geomatics, 4(2), 174–188. https://doi.org/10.4314/sajg.v4i2.9

    Article  Google Scholar 

  • McGrath, S. P., & Smith, S. (1995). Chromium and nickel Heavy metals in soils (pp. 152–178). London: Blackie Academic and Professional.

    Book  Google Scholar 

  • Molinaroli, E., Guerzoni, S., & Rampazzo, G. (1993). Contribution of Saharan dust to the central Mediterranean Basin. Geological Society of America, Special Paper, 284, 303.

    Article  Google Scholar 

  • Mondal, R., & Mistri, B. (2021). Opencast coal mining and rural livelihoods: A study of Sonepur-Bazari mine in Raniganj coalfield area, West Bengal. India. Mineral Economics, 34(3), 477–490. https://doi.org/10.1007/s13563-021-00271-6

    Article  Google Scholar 

  • Mukherjee, K. N., Dutta, N. R., Chandra, D., & Singh, M. P. (1992). Geochemistry of trace elements of Tertiary coals of India. International Journal of Coal Geology, 20(1–2), 99–113. https://doi.org/10.1016/0166-5162(92)90006-I

    Article  CAS  Google Scholar 

  • Muller, G. M. (1969). Index of geoaccumulation in sediments of the Rhine river. GeoJournal, 2, 108–118.

    Google Scholar 

  • Nolting, R. F., Ramkema, A., & Everaarts, J. M. (1999). The geochemistry of Cu, Cd, Zn, Ni and Pb in sediment cores from the continental slope of the Banc d’Arguin (Mauritania). Continental Shelf Research, 19(5), 665–691.

    Article  Google Scholar 

  • Nriagu, J. O., & Pacyna, J. M. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature, 333(6169), 134–139. https://doi.org/10.1038/333134a0

    Article  CAS  Google Scholar 

  • Pal, D. K., Lal, S., Bhattacharya, T., Chandran, P., Ray, S. K., Sayavathi, P. L. A., Raja, P., Maurya, U. K., Durge, S. L., & Kamble, G. K. (2010). Pedogenic thresholds in Benchmark soils under rice-wheat cropping system in a climosequence of the Indo-Gangetic alluvial plains, Final Project Report.RPF III. Division of Soil Resource Studies, NBSS & LUP, Nagpur, India.

  • Pal, D. K., Wani, S. P., & Sahrawat, K. L. (2012). Vertisols of tropical Indian environments: Pedology and edaphology. Geoderma, 189–190, 28–49. https://doi.org/10.1016/j.geoderma.2012.04.021

    Article  CAS  Google Scholar 

  • Pandey, B., Mukherjee, A., Agrawal, M., & Singh, S. (2019). Assessment of seasonal and site-specific variations in soil physical, chemical and biological properties around opencast coal mines. Pedosphere, 29(5), 642–655.

    Article  CAS  Google Scholar 

  • Pandey, B., Singh, S., Roy, L. B., Shekhar, S., Singh, R. K., Prasad, B., & Singh, K. K. K. (2021). Phytostabilization of coal mine overburden waste, exploiting the phytoremedial efficacy of lemongrass under varying level of cow dung manure. Ecotoxicology and Environmental Safety, 208, 111757.

    Article  CAS  Google Scholar 

  • Pentari, D., Typou, J., Goodarzi, F., & Foscolos, A. E. (2006). Comparison of elements of environmental concern in regular and reclaimed soils, near abandoned coal mines Ptolemais-Amynteon, northern Greece: Impact on wheat crops. International Journal of Coal Geology, 65(1–2), 51–58. https://doi.org/10.1016/j.coal.2005.04.008

    Article  CAS  Google Scholar 

  • Poggio, L., & Vrščaj, B. (2009). A GIS-based human health risk assessment for urban green space planning—An example from Grugliasco (Italy). Science of the Total Environment, 407(23), 5961–5970. https://doi.org/10.1016/j.scitotenv.2009.08.026

    Article  CAS  Google Scholar 

  • Provisional statistics of coal. 2021. Ministry of coal, Government of India. Accessed June 30, 2022. https://coal.gov.in/sites/default/files/2021-06/Provisional-Coal-Statistics-2020-21.pdf.

  • Raghuvanshi, G., Chakraborty, P., Hazra, B., Adak, A. K., Singh, P. K., Singh, A. K., & Singh, V. (2022). Pyrolysis and combustion behavior of few high-ash Indian coals. International Journal of Coal Preparation and Utilization. https://doi.org/10.1080/19392699.2020.1855582

    Article  Google Scholar 

  • Raj, D., Chowdhury, A., & Maiti, S. K. (2017). Ecological risk assessment of mercury and other heavy metals in soils of coal mining area: A case study from the eastern part of a Jharia coal field, India. Human and Ecological Risk Assessment: An International Journal, 23(4), 767–787. https://doi.org/10.1080/10807039.2016.1278519

    Article  CAS  Google Scholar 

  • Reza, S. K., Baruah, U., Singh, S. K., & Das, T. H. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area. Northeastern India. Environmental Earth Sciences, 73(9), 5425–5433. https://doi.org/10.1007/s12665-014-3797-1

    Article  CAS  Google Scholar 

  • Ribeiro, J., Da Silva, E. F., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83(4), 456–466. https://doi.org/10.1016/j.coal.2010.06.006

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. Soil Science, 78(2), 154.

    Article  Google Scholar 

  • Riley, K. W., French, D. H., Farrell, O. P., Wood, R. A., & Huggins, F. E. (2012). Modes of occurrence of trace and minor elements in some Australian coals. International Journal of Coal Geology, 94, 214–224. https://doi.org/10.1016/j.coal.2011.06.011

    Article  CAS  Google Scholar 

  • Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. Computational and Applied Mathematics, 20, 53–65. https://doi.org/10.1016/0377-0427(87)90125-7

    Article  Google Scholar 

  • Sadhu, K., Adhikari, K., & Gangopadhyay, A. (2012). Assessment of heavy metal contamination of soils in and around open cast mines of Raniganj area, India. International Journal of Environmental Engineering Research, 1(2), 77–85.

    Google Scholar 

  • Saeedi, M., Li, L. Y., & Salmanzadeh, M. (2012). Heavy metals and polycyclic aromatic hydrocarbons: Pollution and ecological risk assessment in street dust of Tehran. Journal of Hazardous Materials, 227, 9–17. https://doi.org/10.1016/j.jhazmat.2012.04.047

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Bhattacharyya, P., Tripathy, S., Equeenuddin, S. M., & Panigrahi, M. K. (2010). Influence of different forms of acidities on soil microbiological properties and enzyme activities at an acid mine drainage contaminated site. Journal of Hazardous Materials, 179(1–3), 966–975. https://doi.org/10.1016/j.jhazmat.2010.03.099

    Article  CAS  Google Scholar 

  • Salminen, R., Batista, M. J., Bidovec, M., Demetriades, A., De Vivo, B., De Vos, W., Duris, M., Gilucis, A., Gregorauskiene, V., Halamic, J., Heitzmann, P., Lima, A., Jordan, G., Klaver, G., Klein, P., Lis, J., Locutura. J., Marsina, K., Mazreku, A., O'Connor, P. J., Olsson, S. Å., Ottesen, R.-T., Petersell, V., Plant, J. A., Reeder, S., Salpeteur, I., Sandström, H., Siewers, U., Steenfelt, A., & Tarvainen, T. (2005). FOREGS Geochemical Atlas of Europe, Part 1: Background Information, Methodology and Maps; Geological Survey of Finland: Espoo, Finland, 140–347. Retrieved August 22, 2022. http://www.gtk.fi/publ/foregsatlas.

  • Sarkar, A., & Bhattacharya, S. (2016). GIS based assessment and evaluation of the environmental impacts of opencast coal mining in Raniganj Coalfield West Bengal India. IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT), 10(12), 45–58.

    Google Scholar 

  • Shacklette, H. T., & Boerngen, J. G. (1984). Element concentrations in soils and other surficial materials of the conterminous United States (Vol. 1270). Washington, DC: US Government Printing Office. https://semspub.epa.gov/work/07/30017546.pdf.

  • Sheps, S., Finkelman, R. B., Councell, T. B., & Cohen, H. (1997). Leaching of hexavalent chromium from fly ash. In Proceedings of International Coal Science Conference, 1883–86. Germany. https://www.osti.gov/etdeweb/biblio/353950.

  • Shokr, M. S., El Baroudy, A. A., Fullen, M. A., El-Beshbeshy, T. R., Ramadan, A. R., Abd El Halim, A., & Jorge, M. C. (2016). Spatial distribution of heavy metals in the middle nile delta of Egypt. International Soil and Water Conservation Research, 4(4), 293–303. https://doi.org/10.1016/j.iswcr.2016.10.003

    Article  Google Scholar 

  • Siddiqui, A. U., Jain, M. K., & Masto, R. E. (2020). Pollution evaluation, spatial distribution, and source apportionment of trace metals around coal mines soil: The case study of eastern India. Environmental Science and Pollution Research, 27(10), 10822–10834. https://doi.org/10.1007/s11356-019-06915-z

    Article  CAS  Google Scholar 

  • Siddiqui, A. U., Jain, M. K., & Masto, R. E. (2022). Distribution of some potentially toxic elements in the soils of the Jharia Coalfield: A probabilistic approach for source identification and risk assessment. Land Degradation & Development, 33(2), 333–345. https://doi.org/10.1002/ldr.4155

    Article  Google Scholar 

  • Singh, K. N., & Narzary, D. (2021). Geochemical characterization of mine overburden strata for strategic overburden-spoil management in an opencast coal mine. Environmental Challenges, 3, 100060.

    Article  CAS  Google Scholar 

  • Singh, R. S., & Ghosh, P. (2021). Geotourism potential of coal mines: An appraisal of Sonepur-Bazari open cast project, India. International Journal of Geoheritage and Parks, 9(2), 172–181. https://doi.org/10.1016/j.ijgeop.2021.02.007

    Article  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2007). Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemosphere, 68(3), 579–589. https://doi.org/10.1016/j.chemosphere.2006.12.046

    Article  CAS  Google Scholar 

  • Swaine, D. J. (1990). Trace Elements in Coal. Butterworth- Heinemann.

    Google Scholar 

  • Swaine, D. J., & Goodarzi, F. (Eds.). (1995). Environmental aspects of trace elements in coal. Springer Science & Business Media.

    Google Scholar 

  • Thorndike, R. L. (1953). Who Belongs in the Family? Psychometrika, 18(4), 267–276. https://doi.org/10.1007/BF02289263

    Article  Google Scholar 

  • Tomlinson, D. L., Wilson, J. G., Harris, C. R., & Jeffrey, D. W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollution index. Helgoländer Meeresuntersuchungen, 33(1), 566–575. https://doi.org/10.1007/BF02414780

    Article  Google Scholar 

  • Tozsin, G. (2014). Hazardous elements in soil and coal from the Oltu coal mine district, Turkey. International Journal of Coal Geology, 131, 1–6. https://doi.org/10.1016/j.coal.2014.05.011

    Article  CAS  Google Scholar 

  • Trefethen, J. M. (1950). Classification of sediments. American Journal of Science, 248(1), 55–62.

    Article  Google Scholar 

  • US EPA (United States Environmental Protection Agency). (1996). Method 3052: Microwave assisted acid digestion of siliceous and organically based matrices. USA, Washington, DC. Retrieved August 22, 2022. https://www.epa.gov/sites/default/files/2015-12/documents/3052.pdf.

  • Wang, M., Bai, Y., Chen, W., Markert, B., Peng, C., & Ouyang, Z. (2012). A GIS technology based potential eco-risk assessment of metals in urban soils in Beijing, China. Environmental Pollution, 161, 235–242. https://doi.org/10.1016/j.envpol.2011.09.030

    Article  CAS  Google Scholar 

  • Wcisło, E., Bronder, J., Bubak, A., Rodríguez-Valdés, E., & Gallego, J. L. R. (2016). Human health risk assessment in restoring safe and productive use of abandoned contaminated sites. Environment International, 94, 436–448. https://doi.org/10.1016/j.envint.2016.05.028

    Article  CAS  Google Scholar 

  • Wedepohl, K. H. (1995). The composition of the continental crust. Geochimica Et Cosmochimica Acta, 59(7), 1217–1232. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  • Weissmannová, D. H., Mihočová, S., Chovanec, P., & Pavlovský, J. (2019). Potential Ecological Risk and Human Health Risk Assessment of Heavy Metal Pollution in Industrial Affected Soils by Coal Mining and Metallurgy in Ostrava, Czech Republic. International Journal of Environmental Research and Public Health, 16(22), 4495. https://doi.org/10.3390/ijerph16224495

    Article  CAS  Google Scholar 

  • Yapici, G., Can, G., Kiziler, A. R., Aydemir, B., Timur, İH., & Kaypmaz, A. (2006). Lead and cadmium exposure in children living around a coal-mining area in Yatağan Turkey. Toxicology and Industrial Health, 22(8), 357–362.

    Article  CAS  Google Scholar 

  • Zhai, M., Kampunzu, H. A. B., Modisi, M. P., & Totolo, O. (2003). Distribution of heavy metals in Gaborone urban soils (Botswana) and its relationship to soil pollution and bedrock composition. Environmental Geology, 45(2), 171–180. https://doi.org/10.1007/s00254-003-0877-z

    Article  CAS  Google Scholar 

  • Zhai, M., Totolo, O., Modisi, M. P., Finkelman, R. B., Kelesitse, S. M., & Menyatso, M. (2009). Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environmental Geochemistry and Health, 31(6), 759–777. https://doi.org/10.1007/s10653-009-9260-7

    Article  CAS  Google Scholar 

  • Zhan, S., Wu, J., Wang, J., & Jing, M. (2020). Distribution characteristics, sources identification and risk assessment of n-alkanes and heavy metals in surface sediments, Tajikistan, Central Asia. Science of the Total Environment, 709, 136278. https://doi.org/10.1016/j.scitotenv.2019.136278

    Article  CAS  Google Scholar 

  • Zhang, H., Zhang, F., Song, J., Tan, M. L., & Johnson, V. C. (2021). Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in Xinjiang China. Environmental Research, 202, 111702. https://doi.org/10.1016/j.envres.2021.111702

    Article  CAS  Google Scholar 

  • Zhang, Z., Murtagh, F., Van Poucke, S., Lin, S., & Lan, P. (2017). Hierarchical cluster analysis in clinical research with heterogeneous study population: Highlighting its visualization with R. Ann Transl Med., 5(4), 75. https://doi.org/10.21037/atm.2017.02.05

    Article  Google Scholar 

  • Zhu, H., Bing, H., Yi, H., Wu, Y., & Sun, Z. (2018). Spatial distribution and contamination assessment of heavy metals in surface sediments of the Caofeidian adjacent sea after the land reclamation, Bohai Bay. Journal of Chemistry, 2018, 1–13. https://doi.org/10.1155/2018/2049353

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Director CSIR-CIMFR is thankfully acknowledged for giving permission to conduct this work at CSIR-CIMFR. Prasenjeet Chakraborty thankfully acknowledges the Director CSIR-CIMFR and AcSIR for doctoral registration and Department of Science & Technology, Government of India, for providing DST-INSPIRE fellowship. The authors are acknowledging the help provided by Dr. Sudip Maity and Dr. Hridesh Agarwalla for digestion of samples in microwave digester and Dr. R. Ebhin Masto for the ICP-OES analysis of the samples.

Funding

This work was supported by Department of Science & Technology, Government of India (Sanction No. DST/INSPIRE Fellowship/2019/IF190572). Author Prasenjeet Chakraborty has received research support from Department of Science & Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

PC, SS, and BH were involved in conceptualization. PC and DAW contributed to data curation, software, and statistics. PC was involved in formal analysis and roles/writing—original draft. PC and SS contributed to methodology. PC and SS contributed to resources. SS and BH were involved in supervision. SS, BH, and DAW were involved in validation. PC, DAW, SS, and BH were involved in writing—review and editing.

Corresponding author

Correspondence to Siddharth Singh.

Ethics declarations

Conflict of interest

The authors report there are no Conflict of interest to declare.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The authors have consented to publish.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 233 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, P., Wood, D.A., Singh, S. et al. Trace element contamination in soils surrounding the open-cast coal mines of eastern Raniganj basin, India. Environ Geochem Health 45, 7275–7302 (2023). https://doi.org/10.1007/s10653-023-01556-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01556-1

Keywords

Navigation