Skip to main content
Log in

Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Metal mineral mining results in releases of large amounts of heavy metals into the environment, and it is necessary to better understand the response of rhizosphere microbial communities to simultaneous stress from multiple heavy metals (HMs), which directly impacts plant growth and human health. In this study, by adding different concentrations of cadmium (Cd) to a soil with high background concentrations of vanadium (V) and chromium (Cr), the growth of maize during the jointing stage was explored under limiting conditions. High-throughput sequencing was used to explore the response and survival strategies of rhizosphere soil microbial communities to complex HM stress. The results showed that complex HMs inhibited the growth of maize at the jointing stage, and the diversity and abundance of maize rhizosphere soil microorganisms were significantly different at different metal enrichment levels. In addition, according to the different stress levels, the maize rhizosphere attracted many tolerant colonizing bacteria, and cooccurrence network analysis showed that these bacteria interacted very closely. The effects of residual heavy metals on beneficial microorganisms (such as Xanthomonas, Sphingomonas, and lysozyme) were significantly stronger than those of bioavailable metals and soil physical and chemical properties. PICRUSt analysis revealed that the different forms of V and Cd had significantly greater effects on microbial metabolic pathways than all forms of Cr. Cr mainly affected the two major metabolic pathways: microbial cell growth and division and environmental information transmission. In addition, significant differences in rhizosphere microbial metabolism under different concentrations were found, and this can serve as a reference for subsequent metagenomic analysis. This study is helpful for exploring the threshold for the growth of crops in toxic HM soils in mining areas and achieving further biological remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhikari, A., Adhikari, S., Ghosh, S., Azahar, I., Shaw, A. K., Roy, D., Roy, S., Saha, S., & Hossain, Z. (2020). Imbalance of redox homeostasis and antioxidant defense status in maize under chromium (vi) stress. Environmental and Experimental Botany, 169, 12.

    Article  Google Scholar 

  • Ahmad, P., Nabi, G., & Ashraf, M. (2011). Cd-induced oxidative damage in mustard Brassica juncea (L.) Czern. & Coss. Plants can be alleviated by salicylic acid. South African Journal of Botany, 77(1), 36–44.

    Article  CAS  Google Scholar 

  • Aihemaiti, A., Gao, Y. C., Liu, L., Yang, G. D., Han, S. Y., & Jiang, J. G. (2020). Effects of liquid digestate on the valence state of vanadium in plant and soil and microbial community response. Environmental Pollution, 265, 10.

    Article  Google Scholar 

  • Aihemaiti, A., Jiang, J., Li, D., Liu, N., Yang, M., Meng, Y., & Zou, Q. (2018). The interactions of metal concentrations and soil properties on toxic metal accumulation of native plants in vanadium mining area. Journal of Environmental Management, 222, 216–226.

    Article  CAS  Google Scholar 

  • Ao, M., Chen, X., Deng, T., Sun, S., Tang, Y., Morel, J. L., Qiu, R., & Wang, S. (2022). Chromium biogeochemical behavior in soil-plant systems and remediation strategies: A critical review. Journal of Hazardous Materials, 424(Pt A), 127233.

    Article  CAS  Google Scholar 

  • Bacosa, H. P., & Inoue, C. (2015). Polycyclic aromatic hydrocarbons (pahs) biodegradation potential and diversity of microbial consortia enriched from tsunami sediments in miyagi, japan. Journal of Hazardous Materials, 283, 689–697.

    Article  CAS  Google Scholar 

  • Beiyuan, J. Z., Awad, Y. M., Beckers, F., Wang, J. X., Tsang, D. C. W., Ok, Y. S., Wang, S. L., Wang, H. L., & Rinklebe, J. (2020). (im)mobilization and speciation of lead under dynamic redox conditions in a contaminated soil amended with pine sawdust biochar. Environment International, 135, 10.

    Article  Google Scholar 

  • Benavides, M. P., Gallego, S. M., & Tomaro, M. L. (2005). Cd toxicity in plants. [Toxicidade de cádmio em plantas]. Brazilian Journal of Plant Physiology, 17(1), 21–34.

    Article  CAS  Google Scholar 

  • Bennett, J. A., Maherali, H., Reinhart, K. O., Lekberg, Y., Hart, M. M., & Klironomos, J. (2017). Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science, 355(6321), 181–184.

    Article  CAS  Google Scholar 

  • Bevivino, A., Sarrocco, S., Dalmastri, C., Tabacchioni, S., Cantale, C., & Chiarini, L. (1998). Characterization of a free-living maize-rhizosphere population of burkholderia cepacia: Effect of seed treatment on disease suppression and growth promotion of maize. FEMS Microbiology Ecology, 27(3), 225–237.

    Article  CAS  Google Scholar 

  • Boussama, N., Ouariti, O., Suzuki, A., & Ghorbal, M. H. (1999). Cd-stress on nitrogen assimilation. Journal of Plant Physiology, 155(3), 310–317.

    Article  CAS  Google Scholar 

  • Braud, A., Jezequel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74(2), 280–286.

    Article  Google Scholar 

  • Cervantes, C., Campos-Garcia, J., Devars, S., Gutierrez-Corona, F., Loza-Tavera, H., Torres-Guzman, J. C., & Moreno-Sanchez, R. (2001). Interactions of chromium with microorganisms and plants. Fems Microbiology Reviews, 25(3), 335–347.

    Article  CAS  Google Scholar 

  • Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M. H., & Masclaux-Daubresse, C. (2004). Cd toxicity induced changes in nitrogen management in Lycopersicon esculentum, leading to a metabolic safeguard through an amino acid storage strategy. Plant and Cell Physiology, 45(11), 1681–1693.

    Article  CAS  Google Scholar 

  • Chen, L., Liu, J. R., Zhang, W. X., Zhou, J. Q., Luo, D. Q., & Li, Z. M. (2021). Uranium (u) source, speciation, uptake, toxicity and bioremediation strategies in soil-plant system: A review. Journal of Hazardous Materials, 413, 21.

    Article  Google Scholar 

  • Chen, M., Ding, S., Zhang, L., Li, Y., Sun, Q., & Zhang, C. (2017). An investigation of the effects of elevated phosphorus in water on the release of heavy metals in sediments at a high resolution. Science of the Total Environment, 575, 330–337.

    Article  CAS  Google Scholar 

  • Chen, Y. M., Chao, Y. Q., Li, Y. Y., Lin, Q. Q., Bai, J., Tang, L., Wang, S. Z., Ying, R. R., & Qiu, R. L. (2016). Survival strategies of the plant-associated bacterium enterobacter sp strain eg16 under cadmium stress. Applied and Environmental Microbiology, 82(6), 1734–1744.

    Article  CAS  Google Scholar 

  • Chiboub, M., Jebara, S. H., Abid, G., & Jebara, M. (2020). Coinoculation effects of rhizobium sullae and Pseudomonas sp. On growth, antioxidant status, and expression pattern of genes associated with heavy metal tolerance and accumulation of Cd in sulla coronaria. Journal of Plant Growth Regulation, 39(1), 216–228.

    Article  CAS  Google Scholar 

  • Clemens, S., & Ma, J. F. (2016). Toxic heavy metal and metalloid accumulation in crop plants and foods. In S. S. Merchant (Ed.), Annual review of plant biology (Vol. 67, pp. 489–512). Santa Clara: Palo Alto.

    Google Scholar 

  • Demecsova, L., Bocova, B., Zelinova, V., & Tamas, L. (2019). Enhanced nitric oxide generation mitigates Cd toxicity via superoxide scavenging leading to the formation of peroxynitrite in barley root tip. Journal of Plant Physiology, 238, 20–28.

    Article  CAS  Google Scholar 

  • Demkova, L., Jezny, T., & Bobulska, L. (2017). Assessment of soil heavy metal pollution in a former mining area - before and after the end of mining activities. Soil and Water Research, 12(4), 229–236.

    Article  CAS  Google Scholar 

  • Ding, G. T., Jin, Z. J., Han, Y. H., Sun, P., Li, G. Y., & Li, W. H. (2019). Mitigation of chromium toxicity in arabidopsis thaliana by sulfur supplementation. Ecotoxicology and Environmental Safety, 182, 6.

    Article  CAS  Google Scholar 

  • Du, Y., Chen, L., Ding, P., Liu, L. L., He, Q. C., Chen, B. Z., & Duan, Y. Y. (2019). Different exposure profile of heavy metal and health risk between residents near a pb-zn mine and a mn mine in huayuan county, south China. Chemosphere, 216, 352–364.

    Article  CAS  Google Scholar 

  • Edayilam, N., Montgomery, D., Ferguson, B., Maroli, A. S., Martinez, N., Powell, B. A., & Tharayil, N. (2018). Phosphorus stress-induced changes in plant root exudation could potentially facilitate uranium mobilization from stable mineral forms. Environmental Science and Technology, 52(14), 7652–7662.

    Article  CAS  Google Scholar 

  • Ekmekci, Y., Tanyolac, D., & Ayhan, B. (2008). Effects of Cd on antioxidant enzyme and photosynthetic activities in leaves of two maize cultivars. Journal of Plant Physiology, 165(6), 600–611.

    Article  CAS  Google Scholar 

  • Ettler, V. (2016). Soil contamination near nonferrous metal smelters: A review. Applied Geochemistry, 64, 56–74.

    Article  CAS  Google Scholar 

  • Fan, M., Xiao, X., Guo, Y., Zhang, J., Wang, E., Chen, W., Lin, Y., & Wei, G. (2018). Enhanced phytoremdiation of robinia pseudoacacia in heavy metal-contaminated soils with rhizobia and the associated bacterial community structure and function. Chemosphere, 197, 729–740.

    Article  CAS  Google Scholar 

  • Gao, Y., Zhou, P., Mao, L., Zhi, Y., Zhang, C., & Shi, W. (2010). Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under cd and pb combined pollution. Journal of Environmental Sciences, 22(7), 1040–1048.

    Article  CAS  Google Scholar 

  • Garcia, J. S., Gratao, P. L., Azevedo, R. A., & Arruda, M. A. Z. (2006). Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. Journal of Agricultural and Food Chemistry, 54(22), 8623–8630.

    Article  CAS  Google Scholar 

  • Gardea-Torresdey, J. L., de la Rosa, G., Peralta-Videa, J. R., Montes, M., Cruz-Jimenez, G., & Cano-Aguilera, I. (2005). Differential uptake and transport of trivalent and flexavalent chromium by tumbleweed (salsola kali). Archives of Environmental Contamination and Toxicology, 48(2), 225–232.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2011). Cadmium stress tolerance in crop plants: Probing the role of sulfur. Plant signaling & behavior, 6(2), 215–222.

    Article  CAS  Google Scholar 

  • Gourmelon, V., Maggia, L., Powell, J. R., Gigante, S., Hortal, S., Gueunier, C., Letellier, K., & Carriconde, F. (2016). Environmental and geographical factors structure soil microbial diversity in new caledonian ultramafic substrates: A metagenomic approach. PLoS ONE, 11(12), e0167405.

    Article  Google Scholar 

  • Gratao, P. L., Monteiro, C. C., Antunes, A. M., Peres, L. E. P., & Azevedo, R. A. (2008). Acquired tolerance of tomato (lycopersicon esculentum cv. Micro-tom) plants to cadmium-induced stress. Annals of Applied Biology, 153(3), 321–333.

  • Groppa, M. D., Tomaro, M. L., & Benavides, M. P. (2001). Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Science, 161(3), 481–488.

    Article  CAS  Google Scholar 

  • Groppa, M. D., Benavides, M. P., & Tomaro, M. L. (2003). Polyamine metabolism in sunflower and wheat leaf discs under cadmium or copper stress. Plant Science, 164(2), 293–299.

    Article  CAS  Google Scholar 

  • Gu, C., Wang, Y., Bai, S., Wu, J., & Yang, Y. (2015). Tolerance and accumulation of four ornamental species seedlings to soil cadmium contamination. Acta Ecologica Sinica, 35(8), 2536–2544.

    CAS  Google Scholar 

  • Hamilton, E. M., Young, S. D., Bailey, E. H., Humphrey, O. S., & Watts, M. J. (2020). Assessment of chromium species dynamics in root solutions using isotope tracers. Journal of Trace Elements in Medicine and Biology, 61, 7.

    Article  Google Scholar 

  • Herms, C. H., Hennessy, R. C., Bak, F., Dresboll, D. B., & Nicolaisen, M. H. (2022). Back to our roots: Exploring the role of root morphology as a mediator of beneficial plant-microbe interactions. Environmental Microbiology, 24(8), 3264–3272.

    Article  Google Scholar 

  • Himoto, T., & Masaki, T. (2018). Associations between zinc deficiency and metabolic abnormalities in patients with chronic liver disease. Nutrients, 10(1), 17.

    Article  Google Scholar 

  • Hou, D. Y., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366–381.

    Article  Google Scholar 

  • Huang, Y., Li, T., & Fei, Y. H. (2007). Effects of ectomycorrhizal fungi on heavy metal speciation in rhizosphere of pinus tabulaeformis seedlings. Journal of Ecology and Rural Environment, 23(3), 70–76.

    CAS  Google Scholar 

  • Huang, J., Liu, C., Price, G. W., Li, Y., & Wang, Y. (2021). Identification of a novel heavy metal resistant ralstonia strain and its growth response to Cd exposure. Journal of Hazardous Materials, 416, 125942.

    Article  CAS  Google Scholar 

  • Huang, S., Wang, P., Yamaji, N., & Ma, J. F. (2020). Plant nutrition for human nutrition: Hints from rice research and future perspectives. Molecular Plant, 13(6), 825–835.

    Article  CAS  Google Scholar 

  • Iannone, M. F., Rosales, E. P., Groppa, M. D., & Benavides, M. P. (2010). Reactive oxygen species formation and cell death in catalase-deficient tobacco leaf disks exposed to cadmium. Protoplasma, 245(1-4), 15-27.

    Article  CAS  Google Scholar 

  • Imtiaz, M., Rizwan, M. S., Mushtaq, M. A., Yousaf, B., Ashraf, M., Ali, M., Yousuf, A., Rizwan, M., Din, M., Dai, Z. H., Xiong, S. L., Mehmood, S., & Tu, S. X. (2017). Interactive effects of vanadium and phosphorus on their uptake, growth and heat shock proteins in chickpea genotypes under hydroponic conditions. Environmental and Experimental Botany, 134, 72–81.

    Article  CAS  Google Scholar 

  • Islam, E., Liu, D., Li, T. Q., Yang, X., Jin, X. F., Mahmood, Q., Tian, S. K., & Li, J. Y. (2008). Effect of pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of elsholtzia argyi. Journal of Hazardous Materials, 154(1–3), 914–926.

    Article  CAS  Google Scholar 

  • Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (cr) tolerant plant growth promoting bacteria (pgpb) and salicylic acid (sa) in attenuation of chromium stress in maize plants. Plant Physiol Biochem, 108, 456–467.

    Article  CAS  Google Scholar 

  • Ismael, M. A., Elyamine, A. M., Moussa, M. G., Cai, M. M., Zhao, X. H., & Hu, C. X. (2019). Cadmium in plants: Uptake, toxicity, and its interactions with selenium fertilizers. Metallomics, 11(2), 255–277.

    Article  CAS  Google Scholar 

  • Jiang, B., Adebayo, A., Jia, J. L., Xing, Y., Deng, S. Q., Guo, L. M., Liang, Y. T., & Zhang, D. Y. (2019a). Impacts of heavy metals and soil properties at a nigerian e-waste site on soil microbial community. Journal of Hazardous Materials, 362, 187–195.

    Article  CAS  Google Scholar 

  • Jiang, Y. J., Yin, X. Q., Luo, X. H., Yu, L., Sun, H. M., Wang, N., & Mathews, S. (2019b). Sorption of vanadium (v) on three typical agricultural soil of the loess plateau. China. Environmental Pollutants and Bioavailability, 31(1), 120–130.

    Article  CAS  Google Scholar 

  • Jiang, Y., Zhang, C., Huang, X., Ni, C., Wang, J., Song, P., & Zhang, Z. (2016). Effect of heavy metals in the sediment of poyang lake estuary on microbial communities structure base on mi-seq sequencing. China Environmental Science, 36(11), 3475–3486.

    CAS  Google Scholar 

  • Jin, Y., Luan, Y., Ning, Y., & Wang, L. (2018). Effects and mechanisms of microbial remediation of heavy metals in soil: A critical review. Applied Sciences, 8(8), 1336.

    Article  Google Scholar 

  • Kock, D., & Schippers, A. (2008). Quantitative microbial community analysis of three different sulfidic mine tailing dumps generating acid mine drainage. Applied and Environmental Microbiology, 74(16), 5211–5219.

    Article  CAS  Google Scholar 

  • Kranner, I., & Colville, L. (2011). Metals and seeds: Biochemical and molecular implications and their significance for seed germination. Environmental and Experimental Botany, 72(1), 93–105.

    Article  CAS  Google Scholar 

  • Kushwaha, A., Hans, N., Kumar, S., & Rani, R. (2018). A critical review on speciation, mobilization and toxicity of lead in soil microbe-plant system and bioremediation strategies. Ecotoxicology and Environmental Safety, 147, 1035–1045.

    Article  CAS  Google Scholar 

  • Laspina, N. V., Groppa, M. D., Tomaro, M. L., & Benavides, M. P. (2005). Nitric oxide protects sunflower leaves against cd-induced oxidative stress. Plant Science, 169(2), 323–330.

    Article  CAS  Google Scholar 

  • Lazazzara, V., Perazzolli, M., Pertot, I., Biasioli, F., Puopolo, G., & Cappellin, L. (2017). Growth media affect the volatilome and antimicrobial activity against phytophthora infestans in four lysobacter type strains. Microbiological Research, 201, 52–62.

    Article  CAS  Google Scholar 

  • Li, G., Wang, Z., Lv, Y., Jia, S., Chen, F., Liu, Y., & Huang, L. (2021a). Effect of culturing ryegrass (Lolium perenne L.) on cd and pyrene removal and bacteria variations in cocontaminated soil. Environmental Technology & Innovation, 24, 101963.

    Article  CAS  Google Scholar 

  • Li, J. X., Zhang, B. G., Yang, M., & Lin, H. (2021b). Bioleaching of vanadium by acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. Journal of Hazardous Materials, 416, 9.

    Google Scholar 

  • Li, Q., Hu, Q. J., Zhang, C. L., & Jin, Z. J. (2018). Effects of pb, cd, zn, and cu on soil enzyme activity and soil properties related to agricultural land-use practices in karst area contaminated by pb-zn tailings. Polish Journal of Environmental Studies, 27(6), 2623–2632.

    Article  CAS  Google Scholar 

  • Li, X., Chen, D., Li, B., & Yang, Y. (2021c). Cd accumulation characteristics of salvia tiliifolia and changes of rhizospheric soil enzyme activities and bacterial communities under a cd concentration gradient. Plant and Soil, 463(1–2), 225–247.

    Article  CAS  Google Scholar 

  • Li, X., Li, B., Zheng, Y., Luo, L., Qin, X., Yang, Y., & Xu, J. (2022). Physiological and rhizospheric response characteristics to Cd of a newly identified Cd accumulator coreopsis grandiflora hogg. (asteraceae). Ecotoxicology and Environmental Safety, 241, 113739.

    Article  CAS  Google Scholar 

  • Li, Z., Ma, Z., van der Kuijp, T. J., Yuan, Z., & Huang, L. (2014). A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Science of the Total Environment, 468–469, 843–853.

    Article  Google Scholar 

  • Liljeqvist, M., Ossandon, F. J., Gonzalez, C., Rajan, S., Stell, A., Valdes, J., Holmes, D. S., & Dopson, M. (2015). Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiology Ecology, 91(4), 12.

    Article  Google Scholar 

  • Lin, C. Y., Trinh, N. N., Lin, C. W., & Huang, H. J. (2013). Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots. Plant Physiology and Biochemistry, 66, 98–104.

    Article  CAS  Google Scholar 

  • Lin, H., Liu, C., Li, B., & Dong, Y. (2021). Trifolium repens L. Regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. Journal of Hazardous Materials, 402, 123829.

    Article  CAS  Google Scholar 

  • Liu, C., Song, Q., Ao, L., Zhang, N., An, H., Lin, H., & Dong, Y. (2022). Highly promoted phytoremediation with endophyte inoculation in multicontaminated soil: Plant biochemical and rhizosphere soil ecological functioning behavior. Environmental Science and Pollution Research International, 29(59), 89063–89080.

    Article  CAS  Google Scholar 

  • Liu, F. H., Lin, G. H., Gao, G., Qin, B. Q., Zhang, J. S., Zhao, G. P., Zhou, Z. H., & Shen, J. H. (2009). Bacterial and archaeal assemblages in sediments of a large shallow freshwater lake, lake taihu, as revealed by denaturing gradient gel electrophoresis. Journal of Applied Microbiology, 106(3), 1022–1032.

    Article  CAS  Google Scholar 

  • Liu, H. K., Wang, C., Xie, Y. L., Luo, Y., Sheng, M. P., Xu, F., & Xu, H. (2020a). Ecological responses of soil microbial abundance and diversity to Cd and soil properties in farmland around an enterprise-intensive region. Journal of Hazardous Materials, 392, 9.

    Article  Google Scholar 

  • Liu, J., Zhou, Y. C., She, J. Y., Tsang, D. C. W., Lippold, H., Wang, J., Jiang, Y. J., Wei, X. D., Yuan, W. H., Luo, X. W., Zhai, S. J., & Song, L. (2020b). Quantitative isotopic fingerprinting of thallium associated with potentially toxic elements (ptes) in fluvial sediment cores with multiple anthropogenic sources. Environmental Pollution, 266, 11.

    Article  Google Scholar 

  • Liu, J., Ren, S., Cao, J., Tsang, D. C. W., Beiyuan, J., Peng, Y., She, J., Yin, M., Shen, N., Wang, J., & Fang, F. (2021). Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite. Journal of Hazardous Materials, 401, 123311.1-123311.11.

    Article  Google Scholar 

  • Liu, L., Yang, J., & Li, C. (2017). Effects of maize-soybean intercropping on the ammonia oxidizing microbes in the rhizosphere of maize. Jiangsu Journal of Agricultural Sciences, 33(6), 1278–1287.

    Google Scholar 

  • Llugany, M., Miralles, R., Corrales, I., Barcelo, J., & Poschenrieder, C. (2012). Cynara cardunculus a potentially useful plant for remediation of soils polluted with Cd or arsenic. Journal of Geochemical Exploration, 123, 122–127.

    Article  CAS  Google Scholar 

  • Lukacova, Z., Svubova, R., Kohanova, J., & Lux, A. (2013). Silicon mitigates the cd toxicity in maize in relation to Cd translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70(1), 89–103.

    Article  CAS  Google Scholar 

  • Ma, Y., Oliveira, R. S., Freitas, H., & Zhang, C. (2016). Biochemical and molecular mechanisms of plant-microbe-metal interactions: Relevance for phytoremediation. Front Plant Sci, 7, 918.

    Article  Google Scholar 

  • Maine, M. A., Hadad, H. R., Sanchez, G., Caffaratti, S., & Pedro, M. C. (2016). Kinetics of cr(iii) and cr(vi) removal from water by two floating macrophytes. International Journal of Phytoremediation, 18(3), 261–268.

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl, D. G., Jobe, T. O., Hauser, F., & Schroeder, J. I. (2011). Long-distance transport, vacuolar sequestration, tolerance, and transcriptional responses induced by Cd and arsenic. Current Opinion in Plant Biology, 14(5), 554–562.

    Article  CAS  Google Scholar 

  • Mobin, M., & Khan, N. A. (2007). Photosynthetic activity, pigment composition and antioxidative response of two mustard (brassica juncea) cultivars differing in photosynthetic capacity subjected to Cd stress. Journal of Plant Physiology, 164(5), 601–610.

    Article  CAS  Google Scholar 

  • Mongkhonsin, B., Nakbanpote, W., Nakai, I., Hokura, A., & Jearanaikoon, N. (2011). Distribution and speciation of chromium accumulated in gynura pseudochina (L.) dc. Environmental and Experimental Botany, 74, 56–64.

    Article  CAS  Google Scholar 

  • Moynahan, O. S., Zabinski, C. A., & Gannon, J. E. (2002). Microbial community structure and carbon-utilization diversity in a mine tailings revegetation study. Restoration Ecology, 10(1), 77–87.

    Article  Google Scholar 

  • Nannipieri, P. (1994). The potential use of soil enzymes as indicators of productivity, sustainability and pollution. Soil biota: Management in sustainable farming systems (pp. 238–244). East Melbourne: CSIRO.

    Google Scholar 

  • Navarro-Torre, S., Mateos-Naranjo, E., Caviedes, M. A., Pajuelo, E., & Rodriguez-Llorente, I. D. (2016). Isolation of plant-growth-promoting and metal-resistant cultivable bacteria from arthrocnemum macrostachyum in the odiel marshes with potential use in phytoremediation. Marine Pollution Bulletin, 110(1), 133–142.

    Article  CAS  Google Scholar 

  • Pena, L. B., Pasquini, L. A., Tomaro, M. L., & Gallego, S. M. (2007). 20 s proteasome and accumulation of oxidized and ubiquitinated proteins in maize leaves subjected to Cd stress. Phytochemistry, 68(8), 1139–1146.

    Article  CAS  Google Scholar 

  • Pereira, S. I., & Castro, P. M. (2014). Diversity and characterization of culturable bacterial endophytes from zea mays and their potential as plant growth-promoting agents in metal-degraded soils. Environmental Science and Pollution Research International, 21(24), 14110–14123.

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cd permeates through calcium channels and disturbs the plant water status. Plant Journal, 32(4), 539–548.

    Article  CAS  Google Scholar 

  • Pu, S., Wang, Y., Chen, W., & Liu, S. (2020). Review on the mechanism of plant rhizosphere soil enzyme response to heavy metal pollution. Asian Journal of Ecotoxicology, 15(4), 11–20.

    Google Scholar 

  • Qian, H. F., Li, J. J., Pan, X. J., Jiang, H. Y., Sun, L. W., & Fu, Z. W. (2010). Photoperiod and temperature influence Cd’s effects on photosynthesis-related gene transcription in chlorella vulgaris. Ecotoxicology and Environmental Safety, 73(6), 1202–1206.

    Article  CAS  Google Scholar 

  • Qian, Y., Gallagher, F. J., Feng, H., Wu, M. Y., & Zhu, Q. Z. (2014). Vanadium uptake and translocation in dominant plant species on an urban coastal brownfield site. Science of the Total Environment, 476, 696–704.

    Article  Google Scholar 

  • Remmas, N., Melidis, P., Katsioupi, E., & Ntougias, S. (2016). Effects of high organic load on amoa and nirs gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate. Bioresource Technology, 220, 557–565.

    Article  CAS  Google Scholar 

  • Ren, X., Bai, H., Wei, Y., Ma, R., Jia, W., & Yang, G. (2021). Effects of photosynthetic bacteria and biochar on chromium stabilization in polluted soil and the growth of pakchoi. Journal of Agro-Environment Science, 40(10), 2141–2149.

    Google Scholar 

  • Rolando, J. L., Kolton, M., Song, T. Z., & Kostka, J. E. (2022). The core root microbiome of spartina alterniflora is predominated by sulfur-oxidizing and sulfate-reducing bacteria in georgia salt marshes, USA. Microbiome, 10(1), 17.

    Article  Google Scholar 

  • Rosado, D., Usero, J., & Morillo, J. (2016). Ability of 3 extraction methods (bcr, tessier and protease k) to estimate bioavailable metals in sediments from huelva estuary (southwestern spain). Marine Pollution Bulletin, 102(1), 65–71.

    Article  CAS  Google Scholar 

  • Sanita di Toppi, L., & Gabbrielli, R. (1999). Response to Cd in higher plants. Environmental and Experimental Botany, 41(2), 105–130.

    Article  Google Scholar 

  • Shaheen, S. M., Alessi, D. S., Tack, F. M. G., Ok, Y. S., Kim, K. H., Gustafsson, J. P., Sparks, D. L., & Rinklebe, J. (2019). Redox chemistry of vanadium in soils and sediments: Interactions with colloidal materials, mobilization, speciation, and relevant environmental implications - a review. Advances in Colloid and Interface Science, 265, 1–13.

    Article  CAS  Google Scholar 

  • Shen, J. P., Zhang, L. M., Zhu, Y. G., Zhang, J. B., & He, J. Z. (2008). Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environmental Microbiology, 10(6), 1601–1611.

    Article  CAS  Google Scholar 

  • Stambulska, U. Y., Bayliak, M. M., & Lushchak, V. I. (2018). Chromium(vi) toxicity in legume plants: Modulation effects of rhizobial symbiosis. Biomed Research International, 2018, 13.

    Article  Google Scholar 

  • Stephen, J. R., McCaig, A. E., Smith, Z., Prosser, J. I., & Embley, T. M. (1996). Molecular diversity of soil and marine 16 s rrna gene sequences related to betasubgroup ammonia oxidizing bacteria. Applied and Environmental Microbiology, 62(11), 4154.

    Article  Google Scholar 

  • Sun, F. L., Fan, L. L., Wang, Y. S., & Huang, L. Y. (2019). Metagenomic analysis of the inhibitory effect of chromium on microbial communities and removal efficiency in a(2)o sludge. Journal of Hazardous Materials, 368, 523–529.

    Article  CAS  Google Scholar 

  • Sunitha, M. S., Prashant, S., Kumar, S. A., Rao, S., Narasu, M. L., & Kishor, P. K. (2013). Cellular and molecular mechanisms of heavy metal tolerance in plants: A brief overview of transgenic plants overexpressing phytochelatin synthase and metallothionein genes. Plant Cell Biotechnology Molecular Biology, 14(1–2), 33–48.

    Google Scholar 

  • Sytar, O., Kumar, A., Latowski, D., Kuczynska, P., Strzalka, K., & Prasad, M. N. V. (2013). Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiologiae Plantarum, 35(4), 985–999.

    Article  CAS  Google Scholar 

  • Tang, X., Huang, Y., Li, Y., Yang, Y., Cheng, X., Jiao, G., & Dai, H. (2022). The response of bacterial communities to v and cr and novel reducing bacteria near a vanadiumtitanium magnetite refinery. Science of the Total Environment, 806(Pt 3), 151214.

    Article  CAS  Google Scholar 

  • Teng, Y. G., Yang, J., Wang, J. S., & Song, L. T. (2011). Bioavailability of vanadium extracted by edta, hcl, hoac, and nano3 in topsoil in the panzhihua urban park, located in southwest China. Biological Trace Element Research, 144(1–3), 1394–1404.

    Article  CAS  Google Scholar 

  • Teste, F. P., Kardol, P., Turner, B. L., Wardle, D. A., Zemunik, G., Renton, M., & Laliberte, E. (2017). Plant-soil feedback and the maintenance of diversity in mediterranean-climate shrublands. Science, 355(6321), 173–176.

    Article  CAS  Google Scholar 

  • Tian, L. Y., Yang, J. Y., & Huang, J. H. (2015). Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.). Environmental Science and Pollution Research, 22(12), 9215–9223.

    Article  CAS  Google Scholar 

  • Venturi, V., & Keel, C. (2016). Signaling in the rhizosphere. Trends in Plant Science, 21(3), 187–198.

    Article  CAS  Google Scholar 

  • Verma, S. J., & Prakash, S. (2012). Studies on cr (iii) and cr (vi) speciation in the xylem sap of maize plants. In L. D. Khemani, M. M. Srivastava, & S. Srivastava (Eds.), Chemistry of phytopotentials: Health, energy and environmental perspectives (pp. 269–274). Berlin: Springer.

    Chapter  Google Scholar 

  • Wang, H. C., Wu, J. S., Chia, J. C., Yang, C. C., Wu, Y. J., & Juang, R. H. (2009). Phytochelatin synthase is regulated by protein phosphorylation at a threonine residue near its catalytic site. Journal of Agricultural and Food Chemistry, 57(16), 7348–7355.

    Article  CAS  Google Scholar 

  • Wang, Y. A., Ke, X. B., Wu, L. Q., & Lu, Y. H. (2009). Community composition of ammonia-oxidizing bacteria and archaea in rice field soil as affected by nitrogen fertilization. Systematic and Applied Microbiology, 32(1), 27–36.

    Article  CAS  Google Scholar 

  • Wang, Y. L., Yin, X. Q., Sun, H. M., & Wang, C. Z. (2016). Transport of vanadium (v) in saturated porous media: Effects of ph, ionic-strength and clay mineral. Chemical Speciation and Bioavailability, 28(1–4), 7–12.

    Article  Google Scholar 

  • Wang, W., Yamaji, N., & Ma, J. F. (2019). Molecular mechanism of cadmium accumulation in rice. In Cadmium toxicity (pp. 115-124): Springer.

  • Wang, J., She, J. Y., Zhou, Y. C., Tsang, D. C. W., Beiyuan, J., Xiao, T. F., Dong, X. J., Chen, Y. H., Liu, J., Tin, M. L., & Wang, L. L. (2020). Microbial insights into the biogeochemical features of thallium occurrence: A case study from polluted river sediments. Science of the Total Environment, 739, 15.

    Article  Google Scholar 

  • Wang, J., Wang, L. L., Wang, Y. X., Tsang, D. C. W., Yang, X., Beiyuan, J. Z., Yin, M. L., Xiao, T. F., Jiang, Y. J., Lin, W. L., Zhou, Y. C., Liu, J., Wang, L., & Zhao, M. (2022). Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment (vol 146, 106207, 2021). Environment International, 160, 1.

    Article  Google Scholar 

  • Weber, K. P., Gehder, M., & Legge, R. L. (2008). Assessment of changes in the microbial community of constructed wetland mesocosms in response to acid mine drainage exposure. Water Research, 42(1–2), 180–188.

    Article  CAS  Google Scholar 

  • Wei, S.-H., Yang, C.-J., & Zhou, Q.-X. (2008). Hyperaccumulative characteristics of 7 widely distributing weed species in composite family especially bidens pilosa to heavy metals. Huan Jing Ke Xue = Huanjing Kexue, 29(10), 2912–2918.

    Google Scholar 

  • Wu, Z. Z., Yang, J. Y., Zhang, Y. X., Wang, C. Q., Guo, S. S., & Yu, Y. Q. (2021). Growth responses, accumulation, translocation and distribution of vanadium in tobacco and its potential in phytoremediation. Ecotoxicology and Environmental Safety, 207, 13.

    Article  Google Scholar 

  • Xu, Y. L., Seshadri, B., Sarkar, B., Wang, H. L., Rumpel, C., Sparks, D., Farrell, M., Hall, T., Yang, X. D., & Bolan, N. (2018). Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment, 621, 148–159.

    Article  CAS  Google Scholar 

  • Yang, Z., Zhang, Z., Chai, L., Wang, Y., Liu, Y., & Xiao, R. (2016). Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. Journal of Hazardous Materials, 301, 145–152.

    Article  CAS  Google Scholar 

  • Yin, M. L., Zhou, Y. T., Tsang, D. C. W., Beiyuan, J. Z., Song, L., She, J. Y., Wang, J., Zhu, L., Fang, F., Wang, L. L., Liu, J., Liu, Y. Y., Song, G., Chen, D. Y., & Xiao, T. F. (2021). Emergent thallium exposure from uranium mill tailings. Journal of Hazardous Materials, 407, 9.

    Article  Google Scholar 

  • You, Y. M., Wang, Z. G., Xu, W. H., Wang, C. L., Zhao, X. S., & Su, Y. P. (2019). Phthalic acid esters disturbed the genetic information processing and improved the carbon metabolism in black soils. Science of the Total Environment, 653, 212–222.

    Article  CAS  Google Scholar 

  • Zang, F., Wang, S., Nan, Z., Ma, J., Zhang, Q., Chen, Y., & Li, Y. (2017). Accumulation, spatiotemporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the loess plateau, northwest China. Geoderma, 305, 188–196.

    Article  CAS  Google Scholar 

  • Zhang, B. G., Wang, S., Diao, M. H., Fu, J., Xie, M. M., Shi, J. X., Liu, Z. Q., Jiang, Y. F., Cao, X. L., & Borthwick, A. G. L. (2019). Microbial community responses to vanadium distributions in mining geological environments and bioremediation assessment. Journal of Geophysical Research-Biogeosciences, 124(3), 601–615.

    Article  CAS  Google Scholar 

  • Zhang, G. S., Fan, F., Li, X. P., Qi, J. Y., & Chen, Y. H. (2018). Superior adsorption of thallium(i) on titanium peroxide: Performance and mechanism. Chemical Engineering Journal, 331, 471–479.

    Article  CAS  Google Scholar 

  • Zhang, G. S., Luo, J. L., Wang, L., & Zhang, X. W. (2020). Polyvinyl alcohol-stabilized granular fe-mn binary oxide as an effective adsorbent for simultaneous removal of arsenate and arsenite. Environmental Technology, 41(20), 2564–2574.

    Article  Google Scholar 

  • Zhao, F. J., Jiang, R. F., Dunham, S. J., & McGrath, S. P. (2006). Cd uptake, translocation and tolerance in the hyperaccumulator arabidopsis halleri. New Phytologist, 172(4), 646–654.

    Article  CAS  Google Scholar 

  • Zhao, H. R., Xia, B. C., Fan, C., Zhao, P., & Shen, S. L. (2012). Human health risk from soil heavy metal contamination under different land uses near dabaoshan mine, southern China. Science of the Total Environment, 417, 45–54.

    Article  Google Scholar 

  • Zhuang, P., McBride, M. B., Xia, H. P., Li, N. Y., & Lia, Z. A. (2009). Health risk from heavy metals via consumption of food crops in the vicinity of dabaoshan mine, south China. Science of the Total Environment, 407(5), 1551–1561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project (SKLGP2021Z002),the National Natural Science Foundation of China (No. 41977289), the Key Research and Development Project of Sichuan Province (No.2021YFQ0066), the Sichuan Science and Technology Program (No. 2021YFQ0066; No. 2021JDTD0013), and the Everest Scientific Research Program (No. 2020ZF11405), the State Key Laboratory of Geological Disaster Prevention and Geological Environmental Protection Independent Project (No.SKLGP2021Z002).

Author information

Authors and Affiliations

Authors

Contributions

GJ contributed to writing—original draft and data curation. YH contributed to writing—editing, conceptualization, formal analysis, and funding acquisition. HD, HG, and ZL investigated the study. HS contributed to software and investigation. JY and SN contributed to resources, project administration, and funding acquisition.

Corresponding author

Correspondence to Yi Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 862 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, G., Huang, Y., Dai, H. et al. Responses of rhizosphere microbial community structure and metabolic function to heavy metal coinhibition. Environ Geochem Health 45, 6177–6198 (2023). https://doi.org/10.1007/s10653-023-01626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01626-4

Keywords

Navigation