Skip to main content

Advertisement

Log in

Significance of the prime factors regulating arsenic toxicity and associated health risk: a hypothesis-based investigation in a critically exposed population of West Bengal, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The suffering from arsenic toxicity is a long-standing concern in Asian countries. The role of the key factors (arsenic intake, age and sex) regulating arsenic toxicity is aimed to evaluate for a severely exposed population from Murshidabad district, West Bengal. Mean arsenic concentrations in drinking water supplied through tube well, Sajaldhara treatment plant and pipeline were observed as 208, 27 and 54 µg/l, respectively. Urinary arsenic concentration had been observed as < 3–42.1, < 3–56.2 and < 3–80 µg/l in children, teenagers and adults, respectively. Mean concentrations of hair and nail arsenic were found to be 0.84 and 2.38 mg/kg; 3.07 and 6.18 mg/kg; and 4.41 and 9.07 mg/kg, respectively, for the studied age-groups. Water arsenic was found to be associated with hair and nail (r = 0.57 and 0.60), higher than urine (r = 0.37). Arsenic deposition in biomarkers appeared to be dependent on age; however, it is independent of sex. Principal component analysis showed a direct relationship between dietary intake of arsenic and chronic biomarkers. Nail was proved as the most fitted biomarker of arsenic toxicity by Dunn’s post hoc test. Monte Carlo sensitivity analysis and cluster analysis showed that the most significant factor regulating health risk is ‘concentration of arsenic’ than ‘exposure duration’, ‘body weight’ and ‘intake rate’. The contribution of arsenic concentration towards calculated health risk was highest in teenagers (45.5–61.2%), followed by adults (47.8–49%) and children (21–27.6%). Regular and sufficient access to arsenic-safe drinking water is an immediate need for the affected population.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request and it can be shared as per the requirement.

References

  • Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846. https://doi.org/10.1016/j.etap.2015.09.016

    Article  CAS  Google Scholar 

  • Alexakis, D., & Gamvroula, D. (2014). Arsenic, chromium, and other potentially toxic elements in the rocks and sediments of Oropos-Kalamos basin, Attica, Greece. Applied and Environmental Soil Science, 2014, 718534. https://doi.org/10.1155/2014/718534

    Article  CAS  Google Scholar 

  • Alexakis, D. E., Bathrellos, G. D., Skilodimou, H. D., & Gamvroula, D. E. (2021). Spatial distribution and evaluation of arsenic and zinc content in the soil of a karst landscape. Sustainability, 13(12), 6976. https://doi.org/10.3390/su13126976

    Article  CAS  Google Scholar 

  • Arnold, H. L., Odam, R. B., & James, W. D. (1990). Disease of the skin. Clinical dermatology (pp. 121–122). W.B. Saunders.

    Google Scholar 

  • Berglund, M., Lindberg, A. L., Rahman, M., Yunus, M., Grandér, M., Lönnerdal, B., & Vahter, M. (2011). Gender and age differences in mixed metal exposure and urinary excretion. Environmental Research, 111(8), 1271–1279. https://doi.org/10.1016/j.envres.2011.09.002

    Article  CAS  Google Scholar 

  • Bhattacharya, P., Samal, A. C., Majumdar, J., & Santra, S. C. (2010). Arsenic contamination in rice, wheat, pulses, and vegetables: A study in an arsenic affected area of West Bengal, India. Water, Air, and Soil Pollution, 213(1), 3–13. https://doi.org/10.1007/s11270-010-0361-9

    Article  CAS  Google Scholar 

  • Bibi, M., Hashmi, M. Z., & Malik, R. N. (2015). Human exposure to arsenic in groundwater from Lahore district, Pakistan. Environmental Toxicology and Pharmacology, 39(1), 42–52. https://doi.org/10.1016/j.etap.2014.10.020

    Article  CAS  Google Scholar 

  • Biswas, B., Chakraborty, A., Chatterjee, D., Pramanik, S., Ganguli, B., Majumdar, K. K., Nriagu, J., Kulkarni, K. Y., Bansiwal, A., Labhasetwar, P., & Bhowmick, S. (2021). Arsenic exposure from drinking water and staple food (rice): A field scale study in rural Bengal for assessment of human health risk. Ecotoxicology and Environmental Safety, 228, 113012. https://doi.org/10.1016/j.ecoenv.2021.113012

    Article  CAS  Google Scholar 

  • Biswas, A., Swain, S., Chowdhury, N. R., Joardar, M., Das, A., Mukherje, M., & Roychowdhury, T. (2019). Arsenic contamination in Kolkata metropolitan city: Perspective of transportation of agricultural products from arsenic-endemic areas. Environmental Science and Pollution Research, 26, 22929–22944. https://doi.org/10.1007/s11356-019-05595-z

    Article  CAS  Google Scholar 

  • Bozack, A. K., Cardenas, A., Quamruzzaman, Q., Rahman, M., Mostofa, G., Christiani, D. C., & Kile, M. L. (2018). DNA methylation in cord blood as mediator of the association between prenatal arsenic exposure and gestational age. Epigenetics, 13(9), 923–940. https://doi.org/10.1080/15592294.2018.1516453

    Article  Google Scholar 

  • Brima, E. I., Haris, P. I., Jenkins, R. O., Polya, D. A., Gault, A. G., & Harrington, C. F. (2006). Understanding arsenic metabolism through a comparative study of arsenic levels in the urine, hair and fingernails of healthy volunteers from three unexposed ethnic groups in the United Kingdom. Toxicology and Applied Pharmacology, 216(1), 122–130. https://doi.org/10.1016/j.taap.2006.04.004

    Article  CAS  Google Scholar 

  • Buchet, J. P., Lauwerys, R., & Roels, H. (1981). Comparison of the urinary excretion of arsenic metabolites after a single oral dose of sodium arsenite, monomethylarsonate, or dimethylarsinate in man. International Archives of Occupational and Environmental Health, 48(1), 71–79. https://doi.org/10.1007/BF00405933

    Article  CAS  Google Scholar 

  • Byrne, S., Amarasiriwardena, D., Bandak, B., Bartkus, L., Kane, J., Jones, J., Yanez, J., Arriaza, B., & Cornejo, L. (2010). Were Chinchorros exposed to arsenic? Arsenic determination in Chinchorro mummies’ hair by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS). Microchemical Journal, 94(1), 28–35. https://doi.org/10.1016/j.microc.2009.08.006

    Article  CAS  Google Scholar 

  • Casentini, B., Hug, S. J., & Nikolaidis, N. P. (2011). Arsenic accumulation in irrigated agricultural soils in Northern Greece. Science of the Total Environment, 409(22), 4802–4810. https://doi.org/10.1016/j.scitotenv.2011.07.064

    Article  CAS  Google Scholar 

  • Census of India (2011). District Census Handbook, Murshidabad, West Bengal. https://doi.org/10.1016/j.etap.2015.09.016B_MURSHIDABAD.pdf

  • Chakraborti, D., Das, B., Rahman, M. M., Chowdhury, U. K., Biswas, B., Goswami, A. B., Nayak, B., Pal, A., Sengupta, M. K., Ahamed, S., & Hossain, A. (2009). Status of groundwater arsenic contamination in the state of West Bengal, India: A 20-year study report. Molecular Nutrition and Food Research, 53(5), 542–551. https://doi.org/10.1002/mnfr.200700517

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Das, B., Chatterjee, A., Das, D., Nayak, B., Pal, A., Chowdhury, U. K., Ahmed, S., Biswas, B. K., Sengupta, M. K., & Kumar, M. (2017). Groundwater arsenic contamination and its health effects in India. Hydrogeology Journal, 25(4), 1165–1181. https://doi.org/10.1007/s10040-017-1556-6

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Das, B., Nayak, B., Pal, A., Sengupta, M. K., Hossain, M. A., Ahamed, S., Sahu, M., Saha, K. C., & Mukherjee, S. C. (2013). Groundwater arsenic contamination in Ganga–Meghna–Brahmaputra plain, its health effects and an approach for mitigation. Environment and Earth Science, 70(5), 1993–2008. https://doi.org/10.1007/s12665-013-2699-y

    Article  Google Scholar 

  • Chakraborti, D., Sengupta, M. K., Rahman, M. M., Ahamed, S., Chowdhury, U. K., Hossain, A., Mukherjee, S. C., Pati, S., Saha, K. C., Dutta, R. N., & Quamruzzaman, Q. (2004). Groundwater arsenic contamination and its health effects in the Ganga-Meghna-Brahmaputra plain. Journal of Environmental Monitoring, 6(6), 74N-83N. https://doi.org/10.1039/b406573p

    Article  CAS  Google Scholar 

  • Chakraborti, D., Singh, S. K., Rahman, M. M., Dutta, R. N., Mukherjee, S. C., Pati, S., & Kar, P. B. (2018). Groundwater arsenic contamination in the Ganga River Basin: A future health danger. International Journal of Environmental Research and Public Health, 15(2), 180. https://doi.org/10.3390/ijerph15020180

    Article  CAS  Google Scholar 

  • Chakraborty, M., Mukherjee, A., & Ahmed, K. M. (2015). A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: From source to sink. Current Pollution Reports, 1(4), 220–247. https://doi.org/10.1007/s40726-015-0022-0

    Article  CAS  Google Scholar 

  • Chowdhury, N. R., Ghosh, S., Joardar, M., Kar, D., & Roychowdhury, T. (2018). Impact of arsenic contaminated groundwater used during domestic scale post harvesting of paddy crop in West Bengal: Arsenic partitioning in raw and parboiled whole grain. Chemosphere, 211, 173–184. https://doi.org/10.1016/j.chemosphere.2018.07.128

    Article  CAS  Google Scholar 

  • Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R. G., Mandal, B. K., Basu, G. C., Chanda, C. R., Lodh, D., Saha, K. C., Mukherjee, S. K., Roy, S., Kabir, S., Quamruzzaman, Q., & Chakraborti, D. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environmental Health Perspectives, 108(5), 393–397. https://doi.org/10.1289/ehp.00108393

    Article  CAS  Google Scholar 

  • Codex Alimentarius Commission (2014). Report of the Eighth Session of the Codex Committee on Contaminants in Food; the Hague, 31 March–4 April 2014. Rep14/CF. Geneva, Switzerland: World Health Organization, 2014, The Netherlands. Food and Agriculture Organization of the United Nations, Rome, Italy. http://bit.ly/1vprMSO

  • European Commission (2015). Commission Regulation 2015/1006 of 25 June 2015 Amending Regulation (EC) No 1881/2006 As Regards Maximum Levels of Inorganic Arsenic in Foodstuffs.

  • Das, A. (2013). Socio-economic and gender aspects of arsenicosis—A case study in rural West Bengal (India). IOSR Journal of Human Social Science, 13(1), 74–83.

    Google Scholar 

  • Das, A., Biswas, A., & Mazumder, D. N. G. (2018). Association between skin lesion and arsenic concentration in hair by mixed bivariate model in chronic arsenic exposure. Environmental Geochemistry and Health, 40(6), 2359–2369. https://doi.org/10.1007/s10653-018-0102-3

    Article  CAS  Google Scholar 

  • Das, A., Das, S. S., Chowdhury, N. R., Joardar, M., Ghosh, B., & Roychowdhury, T. (2020). Quality and health risk evaluation for groundwater in Nadia district, West Bengal: An approach on its suitability for drinking and domestic purpose. Groundwater for Sustainable Development, 10, 100351. https://doi.org/10.1016/j.gsd.2020.100351

    Article  Google Scholar 

  • Das, A., Joardar, M., Chowdhur, N. R., & Roychowdhury, T. (2021c). Evaluation of health quality in two studied groups of school children from an arsenic-exposed area of West Bengal, India. In J. Dutta, S. Goswami, & A. Mitra (Eds.), Multidimensional approaches to impacts of changing environment on human health (1st ed., pp. 93–112). CRC Press.

    Chapter  Google Scholar 

  • Das, A., Joardar, M., Chowdhury, N. R., De, A., Mridha, D., & Roychowdhury, T. (2021b). Arsenic toxicity in livestock growing in arsenic endemic and control sites of West Bengal: Risk for human and environment. Environmental Geochemistry and Health, 43, 3005–3025. https://doi.org/10.1007/s10653-021-00808-2

    Article  CAS  Google Scholar 

  • Das, A., Joardar, M., De, A., Mridha, D., Chowdhury, N. R., Khan, M. T. B. K., Chakrabartty, P., & Roychowdhury, T. (2021a). Pollution index and health risk assessment of arsenic through different groundwater sources and its load on soil-paddy-rice system in a part of Murshidabad district of West Bengal, India. Groundwater for Sustainable Development, 15, 100652. https://doi.org/10.1016/j.gsd.2021.100652

    Article  Google Scholar 

  • De, A., Mridha, D., Joardar, M., Das, A., Chowdhury, N. R., & Roychowdhury, T. (2022). Distribution, prevalence and health risk assessment of fluoride and arsenic in groundwater from lower Gangetic plain in West Bengal, India. Groundwater for Sustainable Development, 16, 100722.

    Article  Google Scholar 

  • Fang, F., Wang, Y., Zhu, Z., Yao, Y., Lin, Y., & Wang, J. (2019). Distribution characteristics and influencing factors of heavy metals in scalp hair of Huainan urban residents. Environmental Monitoring and Assessment, 191(7), 1–10. https://doi.org/10.1007/s10661-019-7592-z

    Article  CAS  Google Scholar 

  • Farmer, J. G., & Johnson, L. R. (1990). Assessment of occupational exposure to inorganic arsenic based on urinary concentrations and speciation of arsenic. British Journal of Industrial Medicine, 47, 342–348.

    CAS  Google Scholar 

  • Gault, A. G., Rowland, H. A., Charnock, J. M., Wogelius, R. A., Gomez-Morilla, I., Vong, S., Leng, M., Samreth, S., Sampson, M. L., & Polya, D. A. (2008). Arsenic in hair and nails of individuals exposed to arsenic-rich groundwaters in Kandal province, Cambodia. Science of the Total Environment, 393(1), 168–176. https://doi.org/10.1016/j.scitotenv.2007.12.028

    Article  CAS  Google Scholar 

  • Giri, S., Singh, A. K., & Mahato, M. K. (2020). Monte Carlo simulation-based probabilistic health risk assessment of metals in groundwater via ingestion pathway in the mining areas of Singhbhum copper belt, India. International Journal of Environmental Health Research, 30(4), 447–460. https://doi.org/10.1080/09603123.2019.1599101

    Article  CAS  Google Scholar 

  • Golfinopoulos, S. K., Varnavas, S. P., & Alexakis, D. E. (2021). The status of arsenic pollution in the greek and Cyprus environment: An overview. Water, 13(2), 224. https://doi.org/10.3390/w13020224

    Article  CAS  Google Scholar 

  • Gutiérrez-González, E., García-Esquinas, E., de Larrea-Baz, N. F., Salcedo-Bellido, I., Navas-Acien, A., Lope, V., Gómez-Ariza, J. L., Pastor, R., Pollán, M., & Pérez-Gómez, B. (2019). Toenails as biomarker of exposure to essential trace metals: A review. Environmental Research, 179, 108787. https://doi.org/10.1016/j.envres.2019.108787

    Article  CAS  Google Scholar 

  • Hadi, A., & Parveen, R. (2004). Arsenicosis in Bangladesh: Prevalence and socio-economic correlates. Public Health, 118(8), 559–564. https://doi.org/10.1016/j.puhe.2003.11.002

    Article  CAS  Google Scholar 

  • Halder, S. (2019). Groundwater arsenic contamination in Murshidabad, West Bengal: Current scenario, effects and probable ways of mitigation with special reference to Majhyampur water treatment plant Murshidabad. IOSR Journal of Environmental Science, Toxicology and Food Technology, 13(6), 1–11.

    CAS  Google Scholar 

  • Harvey, C. F., Swartz, C. H., Badruzzaman, A. B. M., Keon-Blute, N., Yu, W., Ali, M. A., Jay, J., Beckie, R., Niedan, V., Brabander, D., Oates, P. M., Ashfaque, K. N., Islam, S., Hemond, H. F., & Ahmed, M. F. (2002). Arsenic mobility and groundwater extraction in Bangladesh. Science, 298(5598), 1602–1606. https://doi.org/10.1126/science.1076978

    Article  CAS  Google Scholar 

  • Hata, A., Endo, Y., Nakajima, Y., Ikebe, M., Ogawa, M., Fujitani, N., & Endo, G. (2007). HPLC-ICP-MS speciation analysis of arsenic in urine of Japanese subjects without occupational exposure. Journal of Occupational Health, 49(3), 217–223. https://doi.org/10.1539/joh.49.217

    Article  CAS  Google Scholar 

  • Hinwood, A. L., Sim, M. R., Jolley, D., de Klerk, N., Bastone, E. B., Gerostamoulos, J., & Drummer, O. H. (2003). Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations. Environmental Health Perspectives, 111(2), 187–193. https://doi.org/10.1289/ehp.5455

    Article  CAS  Google Scholar 

  • Hughes, M. F. (2006). Biomarkers of exposure: A case study with inorganic arsenic. Environmental Health Perspectives, 114(11), 1790–1796. https://doi.org/10.1289/ehp.9058

    Article  CAS  Google Scholar 

  • Ioanid, N., Bors, G., & Popa, I. (1961). Beiträgezur Kenntnis des normalen Arsengehaltesron Nägeln und des Gehaltes in den Fällen von Arsenpolyneuritis. International Journal of Legal Medicine, 52(1), 90–94.

    Article  CAS  Google Scholar 

  • Joardar, M., Chowdhury, N. R., Das, A., & Roychowdhury, T. (2021c). Evaluation of health effects and risk assessment of arsenic on an unexposed population from an arsenic-exposed zone of West Bengal, India. In J. Dutta, S. Goswami, & A. Mitra (Eds.), Multidimensional approaches to impacts of changing environment on human health (1st ed., pp. 113–134). CRC Press.

    Chapter  Google Scholar 

  • Joardar, M., Das, A., Chowdhury, N. R., Mridha, D., De, A., Majumdar, K. K., & Roychowdhury, T. (2021a). Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. Environmental Geochemistry and Health, 43, 3027–3053. https://doi.org/10.1007/s10653-021-00823-3

    Article  CAS  Google Scholar 

  • Joardar, M., Das, A., Mridha, D., De, A., Chowdhury, N. R., & Roychowdhury, T. (2021b). Evaluation of acute and chronic arsenic exposure on school children from exposed and apparently control areas of West Bengal India. Expo Health, 13, 33–50. https://doi.org/10.1007/s12403-020-00360-x

    Article  CAS  Google Scholar 

  • Kumar, A., Ali, M., Kumar, R., Kumar, M., Sagar, P., Pandey, R. K., Akhouri, V., Kumar, V., Anand, G., Niraj, P. K., Rani, R., Kumar, S., Kumar, D., Bishwapriya, A., & Ghosh, A. K. (2021). Arsenic exposure in Indo Gangetic plains of Bihar causing increased cancer risk. Science and Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-021-81579-9

    Article  CAS  Google Scholar 

  • Lindberg, A. L., Ekström, E. C., Nermell, B., Rahman, M., Lönnerdal, B., Persson, L. Å., & Vahter, M. (2008). Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environmental Research, 106(1), 110–120. https://doi.org/10.1016/j.envres.2007.08.011

    Article  CAS  Google Scholar 

  • Maity, J. P., Nath, B., Kar, S., Chen, C. Y., Banerjee, S., Jean, J. S., Liu, M., Centeno, J. A., Bhattacharya, P., Chang, C. L., & Santra, S. C. (2012). Arsenic-induced health crisis in peri-urban Moyna and Ardebok villages, West Bengal, India: An exposure assessment study. Environmental Geochemistry and Health, 34(5), 563–574. https://doi.org/10.1007/s10653-012-9458-y

    Article  CAS  Google Scholar 

  • Mandal, D., Biswas, S., Seal, S., Mandal, R., Das, S., & Basu, A. (2022). Arsenic toxicity and its clinical manifestations in Murshidabad district with some potential remedial measures. In Microbes and microbial biotechnology for green remediation (pp. 701–715). Elsevier. https://doi.org/10.1016/B978-0-323-90452-0.00011-6

  • Mandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: A review. Talanta, 58(1), 201–235. https://doi.org/10.1016/S0039-9140(02)00268-0

    Article  CAS  Google Scholar 

  • Mitra, S. R., Mazumder, D. G., Basu, A., Block, G., Haque, R., Samanta, S., Ghosh, N., Hira Smith, M. M., Ehrenstein, O. S., & Smith, A. H. (2004). Nutritional factors and susceptibility to arsenic-caused skin lesions in West Bengal, India. Environmental Health Perspectives, 112(10), 1104–1109. https://doi.org/10.1289/ehp.6841

    Article  CAS  Google Scholar 

  • Mukherjee, S. C., Saha, K. C., Pati, S., Dutta, R. N., Rahman, M. M., Sengupta, M. K., Ahamed, S., Lodh, D., Das, B., Hossain, M. A., Nayak, B., & Asad, K. A. (2005). Murshidabad-one of the nine groundwater arsenic-affected districts of West Bengal, India. Part II: Dermatological, neurological, and obstetric findings. Clinical Toxicology, 43(7), 835–848.

    Article  CAS  Google Scholar 

  • Mukhopadhyay, B. P., Barua, S., Bera, A., & Mitra, A. K. (2020). Study on the quality of groundwater and its impact on human health: A case study from Murshidabad district, West Bengal. Journal of the Geological Society of India, 96(6), 597–602. https://doi.org/10.1007/s12594-020-1608-8

    Article  Google Scholar 

  • Nath, B., Sahu, S. J., Jana, J., Mukherjee-Goswami, A., Roy, S., Sarkar, M. J., & Chatterjee, D. (2008). Hydrochemistry of arsenic-enriched aquifer from rural West Bengal, India: A study of the arsenic exposure and mitigation option. Water, Air and Soil Pollution, 190(1), 95–113. https://doi.org/10.1007/s11270-007-9583-x

    Article  CAS  Google Scholar 

  • Nguyen, T. P. M., Nguyen, T. P. T., Bui, T. H., & Nguyen, T. H. (2019). Concentration of arsenic in groundwater, vegetables, human hair and nails in mining site in the Northern Thai Nguyen province, Vietnam: human exposure and risks assessment. Human and Ecological Risk Assessment: an International Journal, 25(3), 602–613. https://doi.org/10.1080/10807039.2018.1483189

    Article  CAS  Google Scholar 

  • Nielsen, F. H. (2001). Trace minerals. Nutrition in health and sickness (9th ed., pp. 328–331). McGraw-Hill.

    Google Scholar 

  • Nowak, B., & Kozłowski, H. (1998). Heavy metals in human hair and teeth. Biological Trace Element Research, 62(3), 213–228.

    Article  CAS  Google Scholar 

  • NRC. (1999). Arsenic in drinking water. National Academy Press.

    Google Scholar 

  • Pirsaheb, M., Hadei, M., & Sharafi, K. (2021). Human health risk assessment by Monte Carlo simulation method for heavy metals of commonly consumed cereals in Iran-Uncertainty and sensitivity analysis. Journal of Food Composition and Analysis, 96, 103697. https://doi.org/10.1016/j.jfca.2020.103697

    Article  CAS  Google Scholar 

  • Povorinskaya, O. A., & Karpenko, O. M. (2009). Macro-and trace element status of patients of the elder age groups. Bulletin of Experimental Biology and Medicine, 147(4), 473. https://doi.org/10.1007/s10517-009-0556-5

    Article  CAS  Google Scholar 

  • Rahman, M. M., Ng, J. C., & Naidu, R. (2009). Chronic exposure of arsenic via drinking water and its adverse health impacts on humans. Environmental Geochemistry and Health, 31(1), 189–200. https://doi.org/10.1007/s10653-008-9235-0

    Article  CAS  Google Scholar 

  • Rahman, M. A., Rahman, A., Khan, M. Z. K., & Renzaho, A. M. (2018). Human health risks and socio-economic perspectives of arsenic exposure in Bangladesh: A scoping review. Ecotoxicology and Environmental Safety, 150, 335–343. https://doi.org/10.1016/j.ecoenv.2017.12.032

    Article  CAS  Google Scholar 

  • Rahman, M. M., Sengupta, K. M., Ahamed, S., Lodh, D., Das, B., Hossain, A., Nayak, M., & Pati, S. (2005a). Murshidabad-one of the nine groundwater arsenic-affected districts of West Bengal India. Part I: Magnitude of contamination and population at risk. Clinical Toxicology, 43(7), 823–834. https://doi.org/10.1080/15563650500357461

    Article  CAS  Google Scholar 

  • Rahman, M. M., Sengupta, M. K., Ahamed, S., Chowdhury, U. K., Lodh, D., Hossain, M. A., Das, B., Chakraborti, D., Saha, K. C., Kaies, I., & Barua, A. K. (2005b). Status of groundwater arsenic contamination and human suffering in a Gram Panchayet (cluster of villages) in Murshidabad, one of the nine arsenic affected districts in West Bengal, India. Journal of Water Health, 3(3), 283–296. https://doi.org/10.2166/wh.2005.038

    Article  CAS  Google Scholar 

  • Rahman, M., Vahter, M., Sohel, N., Yunus, M., Wahed, M. A., Streatfield, P. K., Ekstrom, E., & Persson, L. Å. (2006). Arsenic exposure and age-and sex-specific risk for skin lesions: A population-based case–referent study in Bangladesh. Environmental Health Perspectives, 114(12), 1847–1852. https://doi.org/10.1289/ehp.9207

    Article  CAS  Google Scholar 

  • Rakhunde, R., Jasudkar, D., Deshpande, L., Juneja, H. D., & Labhasetwar, P. (2012). Health effects and significance of arsenic speciation in water. International Journal of Environmental Science Research, 1(4), 92–96.

    Google Scholar 

  • Rasheed, H., Kay, P., Slack, R., & Gong, Y. Y. (2019). Assessment of arsenic species in human hair, toenail and urine and their association with water and staple food. Journal of Exposure Science and Environmental Epidemiology, 29(5), 624–632. https://doi.org/10.1038/s41370-018-0056-7

    Article  CAS  Google Scholar 

  • Ratnaike, R. N. (2003). Acute and chronic arsenic toxicity. Postgraduate Medical Journal, 79(933), 391–396.

    Article  CAS  Google Scholar 

  • Ravenscroft, P., Brammer, H., & Richards, K. S. (2011). Arsenic pollution: A global synthesis (Vol. 94). Wiley.

    Google Scholar 

  • RGI (2003). Registrar General of India, SRS analytical studies, Report No. 3, New Delhi.

  • Roychowdhury, T. (2010). Groundwater arsenic contamination in one of the 107 arsenic-affected blocks in West Bengal, India: Status, distribution, health effects and factors responsible for arsenic poisoning. International Journal of Hygiene and Environmental Health, 213(6), 414–427. https://doi.org/10.1016/j.ijheh.2010.09.003

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 308, 15–35. https://doi.org/10.1016/S0048-9697(02)00612-5

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., Uchino, T., & Ando, M. (2005). Effect of arsenic-contaminated irrigation water on agricultural land soil and plants in West Bengal, India. Chemosphere, 58(6), 799–810. https://doi.org/10.1016/j.chemosphere.2004.08.098

    Article  CAS  Google Scholar 

  • Rujiralai, T., Juansai, N., & Cheewasedtham, W. (2018). Arsenic determination in soils and hair from schools in past mining activity areas in Ron Phibun district, Nakhon Si Thammarat province, Thailand and relationship between soil and hair arsenic. Chemical Papers, 72(2), 381–391. https://doi.org/10.1007/s11696-017-0287-4

    Article  CAS  Google Scholar 

  • Samal, A. C., Bhattacharya, P., Biswas, P., Maity, J. P., Bundschuh, J., & Santra, S. C. (2021). Variety-specific arsenic accumulation in 44 different rice cultivars (O. sativa L.) and human health risks due to co-exposure of arsenic-contaminated rice and drinking water. Journal of Hazardous Materials, 407, 124804. https://doi.org/10.1016/j.jhazmat.2020.124804

    Article  CAS  Google Scholar 

  • Samanta, G., Sharma, R., Roychowdhury, T., & Chakraborti, D. (2004). Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Science of the Total Environment, 326(1–3), 33–47. https://doi.org/10.1016/j.scitotenv.2003.12.006

    Article  CAS  Google Scholar 

  • Santra, S. C., Samal, A. C., Bhattachary, P., Banerjee, S., Biswas, A., & Majumdar, J. (2013). Arsenic in food chain and community health risk: A study in Gangetic West Bengal. Procedia Environmental Sciences, 18, 2–13. https://doi.org/10.1016/j.proenv.2013.04.002

    Article  CAS  Google Scholar 

  • Shaji, E., Santosh, M., Sarath, K. V., Prakash, P., Deepchand, V., & Divya, B. V. (2021). Arsenic contamination of groundwater: A global synopsis with focus on the Indian Peninsula. Geoscience Frontiers, 12(3), 101079. https://doi.org/10.1016/j.gsf.2020.08.015

    Article  CAS  Google Scholar 

  • Shankar, S., Shanker, U., & Shikha (2014). Arsenic contamination of groundwater: A review of sources, prevalence, health risks, and strategies for mitigation. The Scientific World Journal, 2014, 304524. https://doi.org/10.1155/2014/304524

    Article  Google Scholar 

  • Sharafi, K., Nodehi, R. N., Yunesian, M., Mahvi, A. H., Pirsaheb, M., & Nazmara, S. (2019). Human health risk assessment for some toxic metals in widely consumed rice brands (domestic and imported) in Tehran, Iran: Uncertainty and sensitivity analysis. Food Chemistry, 277, 145–155. https://doi.org/10.1016/j.foodchem.2018.10.090

    Article  CAS  Google Scholar 

  • Signes-Pastor, A. J., Gutiérrez-González, E., García-Villarino, M., Rodríguez-Cabrera, F. D., López-Moreno, J. J., Varea-Jiménez, E., Pastor-Barriuso, R., & Karagas, M. R. (2021). Toenails as a biomarker of exposure to arsenic: A review. Environmental Research, 195, 110286. https://doi.org/10.1016/j.envres.2020.110286

    Article  CAS  Google Scholar 

  • Sthiannopkao, S., Kim, K. W., Cho, K. H., Wantala, K., Sotham, S., Sokuntheara, C., & Kim, J. H. (2010). Arsenic levels in human hair, Kandal Province, Cambodia: The influences of groundwater arsenic, consumption period, age and gender. Applied Geochemistry, 25(1), 81–90. https://doi.org/10.1016/j.apgeochem.2009.10.003

    Article  CAS  Google Scholar 

  • Tobin, D. J. (2005). The biogenesis and growth of hair. Hair in toxicology. In D. J. Tobin (Ed.), An important bio monitor. The Royal Society of Chemistry.

    Chapter  Google Scholar 

  • Tokunaga, H., Roychowdhury, T., Uchino, T., & Ando, M. (2005). Urinary arsenic species in an arsenic-affected area of West Bengal, India (part III). Applied Organometallic Chemistry, 19(2), 246–253. https://doi.org/10.1002/aoc.791

    Article  CAS  Google Scholar 

  • Torres-Sánchez, L., López-Carrillo, L., Rosado, J. L., Rodriguez, V. M., Vera-Aguilar, E., Kordas, K., García-Vargas, G. G., & Cebrian, M. E. (2016). Sex differences in the reduction of arsenic methylation capacity as a function of urinary total and inorganic arsenic in Mexican children. Environmental Research, 151, 38–43. https://doi.org/10.1016/j.envres.2016.07.020

    Article  CAS  Google Scholar 

  • Tseng, C. H. (2009). A review on environmental factors regulating arsenic methylation in humans. Toxicology and Applied Pharmacology, 235(3), 338–350. https://doi.org/10.1016/j.taap.2008.12.016

    Article  CAS  Google Scholar 

  • USEPA (2005). Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum. United States Environmental Protection Agency, Washington, DC. EPA/630/P-03/ 001F

  • Vahter, M. (1994). Species differences in the metabolism of arsenic compounds. Applied Organometallic Chemistry, 8(3), 175–182.

    Article  CAS  Google Scholar 

  • Vahter, M. (1999). Methylation of inorganic arsenic in different mammalian species and population groups. Science Progress, 82(1), 69–88.

    Article  CAS  Google Scholar 

  • Wade, T. J., Xia, Y., Mumford, J., Wu, K., Le, X. C., Sams, E., & Sanders, W. E. (2015). Cardiovascular disease and arsenic exposure in Inner Mongolia, China: A case control study. Environmental Health, 14(1), 1–10. https://doi.org/10.1186/s12940-015-0022-y

    Article  CAS  Google Scholar 

  • Wenning, R. J., & Erickson, G. A. (1994). Interpretation and analysis of complex environmentaldata using chemometric methods. TrAC, Trends in Analytical Chemistry, 13(10), 446–457.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking-water quality. World Health Org., 216, 303–304.

    Google Scholar 

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., & Robson, M. (2018). Using hair and fingernails in binary logistic regression for bio-monitoring of heavy metals/metalloid in groundwater in intensively agricultural areas, Thailand. Environmental Research, 162, 106–118. https://doi.org/10.1016/j.envres.2017.11.024

    Article  CAS  Google Scholar 

  • Wu, B., & Chen, T. (2010). Changes in hair arsenic concentration in a population exposed to heavy pollution: Follow-up investigation in Chenzhou City, Hunan Province, Southern China. Journal of Environmental Science, 22(2), 283–289. https://doi.org/10.1016/S1001-0742(09)60106-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the help of ‘field workers’, especially the team members of ‘Bilchatra Anneshan Janaakalyan Samity, a Non-Government Organization (NGO) located in Raninagar for collection of required samples in the field. The authors further acknowledge the studied population for showing their willingness to be involved into the work and providing the samples and related information to carry forward the study. The local Raninagar II gram panchayat office and Block Development Office are well acknowledged. Financial supports from ‘Department of Science & Technology’, Government of West Bengal (Research Project Grant Memo No. 262 (Sanc.)/ST/P/S&T/1G-64/2017, dated 25/3/2018) and Inter University Research Project, RUSA (R-11/1092/19, dated 06/08/2019).

Funding

‘Department of Science & Technology’, Government of West Bengal (Research Project Grant Memo No. 262 (Sanc.)/ST/P/S&T/1G-64/2017, dated 25/3/2018) and Inter University Research Project, RUSA (R-11/1092/19, dated 06/08/2019).

Author information

Authors and Affiliations

Authors

Contributions

AD did research planning, analytical work, statistical presentation and initial draft preparation. MJ done analysis, initial draft preparation and checking. NRC contributed to analysis and draft checking. DM and AD were involved in field survey, collection of samples and information from fields. SM did draft checking and data evaluation. JD performed statistical presentation. KKM did identification of dermatological skin manifestations and health check-up of the studied populations. TR did overall supervising the entire research study, monitoring the research project and work plan, manuscript revision and correction.

Corresponding author

Correspondence to Tarit Roychowdhury.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

The health guideline for human experiment has been followed, and all procedures performed in this study involving human participants were in accordance with the ethical standards of the institute and international ethical standards.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

All the authors are agreed to publish this work in this well renowned journal and no part of this manuscript is either published earlier, or under consideration anywhere. The authors affirm that human research participants provided informed consent for publication of the images in Supplementary Fig. S3.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3517 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, A., Joardar, M., Chowdhury, N.R. et al. Significance of the prime factors regulating arsenic toxicity and associated health risk: a hypothesis-based investigation in a critically exposed population of West Bengal, India. Environ Geochem Health 45, 3423–3446 (2023). https://doi.org/10.1007/s10653-022-01422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01422-6

Keywords

Navigation