Skip to main content

Advertisement

Log in

Hydrochemistry of Arsenic-Enriched Aquifer from Rural West Bengal, India: A Study of the Arsenic Exposure and Mitigation Option

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The present study aims to understand the hydrochemistry vis-à-vis As-exposure from drinking groundwater in rural Bengal. The characteristic feature of the groundwaters are low Eh (range, −151 to −37 mV; mean, −68 mV) and nitrate (range, 0.01–1.7 mg/l; mean, 0.14 mg/l) followed by high alkalinity (range, 100–630 mg/l; mean, 301 mg/l), Fe (range, 0.99–38 mg/l; mean, 8.1 mg/l), phosphate (range, 0.01–15 mg/l; mean, 0.54 mg/l), hardness (range, 46–600 mg/l; mean, 245 mg/l) and sulphate (range, 0.19–88 mg/l; mean, 7.2 mg/l), indicating reducing nature of the aquifer. The land use pattern (sanitation, surface water bodies, sanitation coupled with surface water bodies and agricultural lands) demonstrates local enrichment factor for As/Fe in groundwater. Among these, sanitation is the most prevailing where groundwater is generally enriched with As (mean, 269 μg/l) and Fe (mean, 9.8 mg/l). Questionnaire survey highlights that ∼70% of the villagers in the study area do not have proper sanitation. This demonstrating the local unsewered sanitation (organic waste, anthropogenic in origin) could also cause As toxicity in rural Bengal. In the agricultural lands, higher mean values of alkalinity, phosphate, sulphate, hardness and electrical conductivity was observed, and could be linked with the excessive use of fertilizers for agricultural production. Bio-markers study indicates that the accumulation of As in hair and nail is related with the construction of exposure scenario with time dimension. The strength and weakness of the on-going West Bengal and Bangladesh drinking water supply scenario and achievability towards alternative options are also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acharyya, S. K., Shah, B. A., Ashyiya, I. D., & Pandey, Y. (2006). Arsenic contamination in groundwater from parts of Ambagarh-Chowki block, Chhattisgarh, India: Source and release mechanism. Environmental Geology, 49, 148–158.

    Article  CAS  Google Scholar 

  • Agahian, B., Lee, J. S., Nelson, H. J., & Johns, R. E. (1990). Arsenic levels in fingernails as a biological indicator of exposure to arsenic. American Industrial Hygiene Association Journal, 51, 646–651.

    CAS  Google Scholar 

  • Aharoni, A., & Tesler, Y. (1992). Hair chromium content of women with gestational diabetes compared with non-diabetic pregnant women. American Journal of Clinical Nutrition, 55, 104–107.

    CAS  Google Scholar 

  • Anawar, H. M., Akai, J., Mostofa, K. M. G., Safiullah, S., & Tareq, S. M. (2002). Arsenic poisoning in groundwater: Health risk and geochemical sources in Bangladesh. Environment International, 27, 597–604.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, R. K. (2002). Hydrochemistry of As in Nadia district, West Bengal. Journal of Geological Society India, 59, 33–46.

    CAS  Google Scholar 

  • BBS (2000). Statistical year book of Bangladesh, Bangladesh Bureau of Statistics Government of Bangladesh.

  • BGS & DPHE (2001). Arsenic contamination of groundwater in Bangladesh. In D. G. Kinniburgh, & P. L. Smedley (Eds.). British Geological Survey WC/00/19, Keyworth.

  • Bhattacharya, R., & Chatterjee, D. (2001). Technique for arsenic removal from groundwater utilizing geological options – An innovative low cost remediation. International Association of Hydrological Society, 275, 391–396.

    Google Scholar 

  • Bhattacharya, P., Chatterjee, D., & Jacks, G. (1997). Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, Eastern India: Options for safe drinking water supply. Journal of Water Resources Development, 13, 79–92.

    Article  Google Scholar 

  • Bhattacharya, R., Chatterjee, D., Nath, B., Jana, J., Jacks, G., & Vahter, M. (2003b). High arsenic groundwater: Mobilization, metabolism and mitigation – An overview in the Bengal Delta Plain. Molecular and Cellular Biochemistry, 253, 347–355.

    Article  Google Scholar 

  • Bhattacharya, R., Jana, J., Nath, B., Sahu, S. J., Chatterjee, D., & Jacks, G. (2003a). Groundwater As mobilization in the Bengal Delta Plain, the use of ferralite as a possible remedial measure – A case study. Applied Geochemistry, 18, 1435–1451.

    Article  CAS  Google Scholar 

  • Carbonell, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H. (1998). Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217, 189–199.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Rahman, M. M., Paul, K., Chowdhury, U. K., Sengupta, M. K., Lodh, D., et al. (2002). Arsenic calamity in the Indian subcontinent. What lessons have been learned? Talanta, 58, 3–22.

    Article  CAS  Google Scholar 

  • Chakraborti, D., Samanta, G., Mandal, B. K., RoyChowdhury, T., Chanda, C. R., Biswas, B. K., et al. (1998). Calcutta’s industrial pollution: groundwater arsenic contamination in a residential area and sufferings of people due to industrial effluent discharge – An 8-year study report. Current Science, 74, 346–355.

    CAS  Google Scholar 

  • Charlet, L., Chakraborty, S., Appelo, C. A. J., Roman-Ross, G., Nath, B., Ansari, A. A., et al. (2007). Chemodynamics of an As “hotspot” in a West Bengal aquifer: A field and reactive transport modeling study. Applied Geochemistry, 22, 1273–1292.

    Article  CAS  Google Scholar 

  • Charlet, L., Chakraborty, S., Verma, S., Tournassat, C., Chatterjee, D., & Roman-Ross, G. (2005). Adsorption and heterogenous reduction of arsenic at the phylosillicate–water interface. In P. O’Day & I. G. Benning (Eds.), Advance in Arsenic Research. American Chemical Society Symposium Series (915, pp. 41–59).

  • Charlet, L., & Polya, D. A. (2006). Arsenic in shallow, reducing groundwaters in Southern Asia: An environmental health disaster. Elements, 2, 91–96.

    Article  Google Scholar 

  • Chatterjee, D., Chakraborty, S., Nath, B., Jana, J., Bhattacharya, R., Basu Mallik, S., et al. (2003). Mobilization of arsenic in sedimentary aquifer vis-à-vis subsurface iron reduction processes. Journal de Physique IV, 107, 293–296.

    Article  CAS  Google Scholar 

  • Chatterjee, D., Chakraborty, S., Nath, B., Jana, J., Mukherjee, P., & Sarkar, M. (2004). Geochemistry of arsenic in deltaic sediment. Geochimica et Cosmochimica Acta, 68, A514.

    Google Scholar 

  • Chatterjee, D., Roy, R. K., & Basu, B. B. (2005). Riddle of arsenic in groundwater of Bengal Delta Plain – Role of non-inland source and redox traps. Environmental Geology, 49, 188–206.

    Article  CAS  Google Scholar 

  • Chen, C. J., Chuang, Y. C., Lin, T. M., & Wu, H. Y. (1985). Malignant neoplasms among residents of a blackfoot disease endemic area in Taiwan: High-arsenic artesian well water and cancers. Cancer Research, 45, 5895–5899.

    CAS  Google Scholar 

  • Current Conflict of Middle East. (2007). Retrieved April 2, 2007, from http://www.mideastweb.org/water.htm.

  • Das, D., Chatterjee, A., Mandal, B. K., Samanta, G., Chakraborty, D., & Chanda, B. (1995). Arsenic in groundwater in six districts of West Bengal, India: The biggest As calamity in the world, part 2, As concentration in drinking water, hair, nails, urine, skin-scale and liver tissue (biopsy) of the affected people. Analyst, 120, 917–924.

    Article  CAS  Google Scholar 

  • Das, D., Chatterjee, A., Samanta, G., Mandal, B., Chowdhery, T. R., Samanta, G., et al. (1994). Arsenic contamination in groundwater in six districts of West Bengal, India: The Biggest arsenic calamity in the world. Analyst, 119, 168–171.

    Article  Google Scholar 

  • Davenport, J. R., & Peryea, F. J. (1991). Phosphate fertilizers influence leaching of lead and arsenic in soil contaminated with lead arsenate. Water, Air and Soil Pollution, 101, 57–58.

    Google Scholar 

  • Davis, J. C. (1986). Statistics and data analysis in geology. New York: Wiley.

    Google Scholar 

  • Guha Mazumdar, D. M., Chakraborty, A. K., Ghosh, A., Gupta, J. D., Chakraborty, D. P., Dey, S. B., et al. (1988). Chronic arsenic toxicity from drinking tubewell water in rural West Bengal. Bulletin World Health Organization, 66, 499–506.

    Google Scholar 

  • Hindmarsh, J. T. (2002). Caveats in hair analysis in chronic arsenic poisoning. Clinical Biochemistry, 35, 1–11.

    Article  CAS  Google Scholar 

  • Hsu, Y., Chiou, H., Huang, Y., Wu, W., Huang, C., Yang, M., et al. (1997). Serum beta-carotene level, arsenic methylation capability and incidence of skin cancer. Cancer Epidemiology Biomarkers and Prevention, 6, 589–596.

    Google Scholar 

  • Huq, S. M. I., Jahan Ara, Q. A., Islam, K., Zaher, A., & Naidu, R. (2001). The possible contamination from arsenic through food chain. In G. Jacks, P. Bhattacharya, & A. A. Khan (Eds.), Groundwater arsenic contamination in the Bengal Delta plain of Bangladesh (pp. 91–96). Proceedings of the KTH-Dhaka University Seminar, KTH Special Publication, TRITAAMI report 3084.

  • IPCS (2001). Arsenic and arsenic compounds (2nd ed.) English and Bengali version. Geneva, Switzerland: WHO and WHO-WBVA.

    Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis (2nd ed.). New Delhi: Prentice-Hall India Pvt. Ltd.

    Google Scholar 

  • Koons, R. D., & Peters, C. A. (1994). Axial distribution of arsenic in individual human hairs by solid sampling graphite furnace AAS. Journal of Analytical Toxicology, 18, 36–40.

    CAS  Google Scholar 

  • Kurttio, P., Komulainen, H., Hakala, E., Kahelin, H., & Pekkanen, J. (1998). Urinary excretion of arsenic species after exposure to arsenic present in drinking water. Archives of Environmental Contamination and Toxicology, 34, 297–305.

    Article  CAS  Google Scholar 

  • Lehoczky, É., Neémeth, T., Kiss, Z., & Szalai, T. (2002). Heavy metal uptake by ryegrass, lettuce and white mustard plants on different soils. Paper presented at the 17th WCSS, 14–21 August, Thailand.

  • Marin, A. R., Masschenlyn, P. H., & Patrick, W. H., Jr. (1992). The influence of chemical form and concentration of arsenic on rice growth and tissue arsenic concentration. Plant and Soil, 139, 175–183.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Banerjee, D. M., Hudson-Edwards, K. A., Mishra, R., Purohit, R., Ravenscroft, P., et al. (2004). Natural organic matter in sedimentary basins and its relation to As in anoxic ground water: The example of West Bengal and its worldwide implications. Applied Geochemistry, 19, 1255–1293.

    Article  CAS  Google Scholar 

  • McArthur, J. M., Ravencroft, P., Safiullah, S., & Thirlwall, M. F. (2001). Arsenic in groundwater: Testing pollution mechanism for sedimentary aquifers in Bangladesh. Water Resources Research, 37, 109–117.

    Article  CAS  Google Scholar 

  • Morton, W. E., & Dunnette, D. A. (1994). Health effects of environmental arsenic. In J. O. Nriagu (Ed.), Arsenic in the environment, part II, human health and ecosystem effects. Advances in environmental sciences and technology (pp. 17–34). New York: Wiley.

    Google Scholar 

  • Mukherjee, P., Chatterjee, D., Jana, J., Maity, P. B., Saha, H., Sen, M., et al. (2006). Household water treatment option: Removal of arsenic in presence of natural iron containing groundwater by solar oxidation. Arsenic in Soil and Groundwater: Biogeochemical Interactions. In J. O. Nriagu (Ed.), Trace metals and other contaminants in the environment (pp. 583–602). Amsterdam: Elsevier. DOI 10.1016/S0927-5215(06)09023-0.

    Google Scholar 

  • Mukherjee, M., Sahu, S. J., Jana, J., De Dalal, S. S., & Chatterjee, D. (2001). Scope of natural geochemical material in the removal of arsenic in drinking water. River Behavioral Contamination, 24, 1–7.

    Google Scholar 

  • Narang, A. P. S., Chawla, L. S., & Khurana, S. B. (1987). Levels of arsenic in Indian opium eaters. Drug and Alcohol Dependence, 20, 149–153.

    Article  CAS  Google Scholar 

  • Nath, B., Berner, Z., Basu Mallik, S., Chatterjee, D., Charlet, L., & Stüeben, D. (2005). Characterization of aquifers conducting groundwaters with low and high arsenic concentrations: A comparative case study from West Bengal, India. Mineralogical Magazine, 69, 841–853.

    Article  CAS  Google Scholar 

  • Nath, B., Berner, Z., Chatterjee, D., Basu Mallik, S., & Stüben, D. (2008a). Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part II: Comparative geochemical profile and leaching study. Applied Geochemistry (in press).

  • Nath, B., Stüben, D., Basu Mallik, S., Chatterjee, D., & Charlet, L. (2008b). Mobility of arsenic in West Bengal aquifers conducting low and high groundwater arsenic. Part I: Comparative hydrochemical and hydrogeological characteristics. Applied Geochemistry (in press).

  • Nickson, R. T., McArthur, J. M., Shrestha, B., Kyaw-Myint, T. O., & Lowry, D. (2005). Arsenic and other drinking water quality issues, Muzaffargarh District, Pakistan. Applied Geochemistry, 20, 55–58.

    Article  CAS  Google Scholar 

  • Norra, S., Berner, Z. A., Agarwala, P., Wagner, F., Chandrasekharam, D., & Stüben, D. (2005). Impact of irrigation with As rich groundwater on soil and crops: A geochemical case study in West Bengal Delta Plain, India. Applied Geochemistry, 20, 1890–1906.

    Article  CAS  Google Scholar 

  • Nowak, B. (1993). Levels of heavy metals in the biological tests (hair, teeth) as an indicator of the environment pollution. International Conference – Heavy Metals in the Environment, Toronto. (pp. 408–411).

  • Pal, T., Mukherjee, P. K., & Sengupta, S. (2002). Nature of arsenic pollutants in groundwater of Bengal Basin – A case study from Baruipur area, West Bengal, India. Current Science, 82, 554–561.

    CAS  Google Scholar 

  • PHED (1993). National Drinking Water Mission project on Arsenic pollution on groundwater in West Bengal. Final report, Steering Committee on As investigation. Government of West Bengal, India.

  • Pierce, M. L., & Moore, C. B. (1980). Adsorption of arsenite and arsenate on amorphous iron hydroxide from dilute aqueous solutions. Environmental Science and Technology, 14, 214–216.

    Article  CAS  Google Scholar 

  • Polya, D. A., Gault, A. G., Bourne, N. J., Lythgoe, P. R., & Cooke, D. A. (2003). Coupled HPLC-ICP-MS analysis indicates highly hazardous concentrations of dissolved arsenic species are present in Cambodian well waters. In G. Holland & S. D. Tanner (Eds.), Plasma source mass spectrometry: Applications and emerging technologies (pp. 127–140). Cambridge: Royal Society of Chemistry.

    Google Scholar 

  • Pounds, C. A., Pearson, E. F., & Turner, T. D. (1979). Arsenic in fingernails. Journal of the Forensic Science Society, 19, 165–174.

    CAS  Google Scholar 

  • Pushpamma, P. P., Geerani, O. P., & Rani, M. U. (1982). Food intake and nutrient adequacy of rural population of Andhra Pradesh, India. Human Nutrition – Applied Nutrition, 4, 293–301.

    Google Scholar 

  • Rahman, M. A., Hasegawa, H., Rahman, M. M., Mazid Miah, M. A., & Tasmin, A. (2008). Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety, 69, 317–324.

    Article  CAS  Google Scholar 

  • Saha, K. C. (1984). Melanokeratosis from arsenical contamination of tubewell water. Indian Journal of Dermatology, 29, 37–46.

    CAS  Google Scholar 

  • Samanta, G., Sharma, R., Roychowdhury, T., & Chakraborti, D. (2004). Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India. Science of the Total Environment, 326, 33–47.

    Article  CAS  Google Scholar 

  • Schegel-Zawadzka, M. (1992). Chromium content in the hair of children and students in Southern Poland. Biological Trace Element Research, 32, 79–84.

    Article  Google Scholar 

  • Shrestha, R. R., Shrestha, M. P., Upadhyay, N. P., Pradhan, R., Khadka, R., Maskey, A., et al. (2003). Groundwater arsenic contamination, its health impact and mitigation program in Nepal. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 38, 185–200.

    Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.

    Article  CAS  Google Scholar 

  • Smith, A. H., Arroyo, A. P., Guha Mazumder, D., Kosnett, M. J., Hernandez, A. L., Beeris, M., et al. (2000b). Arsenic induced skin lesions among Atecamello people in Northern Chile despite good nutrition and centuries of exposure. Environmental Health Perspectives, 108, 617–620.

    Article  CAS  Google Scholar 

  • Smith, M. M. H., Hore, T., Chakraborty, P., Chakraborty, D. K., Savarimuthu, X., & Smith, A. H. (2003). A dugwell program to provide arsenic-safe water in West Bengal, India: Preliminary result. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances & Environmental Engineering, 38, 289–299.

    Google Scholar 

  • Smith, A. H., Lingas, E. O., & Rahaman, M. (2000a). Contamination of drinking water by arsenic in Bangladesh: A public health emergency. Bulletin World Health Organization, 78, 1093–1103.

    CAS  Google Scholar 

  • Steinmaus, C., Nuñez, S., & Smith, A. H. (2000). Diet and bladder cancer: A meta-analysis of six dietary variables. American Journal of Epidemiology, 151, 693–702.

    CAS  Google Scholar 

  • Takagi, Y., Matsuda, S., Imai, S., Ohmori, Y., Masuda, T., Vinson, J. A., et al. (1988). Survey of trace elements in human nails: An international comparison. Bulletin of Environmental Contamination and Toxicology, 41, 690–695.

    Article  CAS  Google Scholar 

  • Tam, G. K., & Lacroix, G. (1982). Dry ashing hydride generation atomic absorption spectrometric determination of arsenic and selenium. Journal of the Association of Official Analytical Chemists, 65, 647–650.

    CAS  Google Scholar 

  • United Nations Millennium Development Goals. (2007). Retrieved April 2, 2007, from http://www.un.org/waterforlifedecade/.

  • Valentine, J. L., Kang, H. K., & Spivey, G. (1979). Arsenic levels in human blood, urine, and hair in response to exposure via drinking water. Environmental Research, 20, 24–32.

    Article  CAS  Google Scholar 

  • Wang, C. T., Chang, W. T., Huang, C. W., Chou, S. S., Lin, C. T., Liau, S. J., et al. (1994). Studies on the concentrations of arsenic, selenium, copper, zinc, and iron in the hair of blackfoot disease patients in different clinical stages. European Journal of Clinical Chemistry and Clinical Biochemistry, 32, 107–111.

    CAS  Google Scholar 

  • Welch, A. H., & Lico, M. S. (1988). Factors controlling As and U in shallow groundwater, southern Carson Desert, Nevada. Applied Geochemistry, 13, 521–539.

    Article  Google Scholar 

  • WHO (2001). Guideline for drinking water quality (3rd ed., Vol-1). Geneva, Switzerland: WHO.

    Google Scholar 

  • Wilhelm, M., & Hafner, D. (1991). Monitoring of cadmium, cooper, lead, and zinc status in young children using toenails: Comparison with scalp hair. Science of the Total Environment, 103, 199–207.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author (BN) acknowledges the Deutscher Akademischer Austausch Dienst (DAAD) for a fellowship and the Institute für Mineralogie und Geochemie, Universität Karlsruhe, Germany and Kalyani University, India for making available their laboratory facilities for this research. The authors also thank RGNDWM, Govt. of India and IFCPAR for giving financial support. DC (corresponding author) is expressing his deep gratitude to late Prof. Nityananda Saha for his active support. We are also acknowledging the field support of Sri Arnab De.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nath, B., Sahu, S.J., Jana, J. et al. Hydrochemistry of Arsenic-Enriched Aquifer from Rural West Bengal, India: A Study of the Arsenic Exposure and Mitigation Option. Water Air Soil Pollut 190, 95–113 (2008). https://doi.org/10.1007/s11270-007-9583-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-007-9583-x

Keywords

Navigation