Skip to main content

Characteristics and Health Effects of Arsenic Exposure in Bangladesh

  • Chapter
  • First Online:
Arsenic Contamination in Asia

Abstract

Arsenic is a potent environmental pollutant and a well-established human carcinogen. Contaminated groundwater is the main source of arsenic exposure in many countries, including Bangladesh. Rural people in Bangladesh depend almost entirely on hand-pumped tube well water, which has been heavily contaminated with arsenic. Considering the country’s 125.5 million population in 1999, it has been estimated that more than half of the total population has been exposed to arsenic through drinking water resulting in a serious public health concern and a socioeconomic burden to the country. Chronic arsenic exposure is associated with skin lesions, cancer, cardiovascular diseases (CVDs), and other chronic diseases such as diabetes and respiratory dysfunctions. We conducted a series of epidemiological studies to quantitatively evaluate the arsenic-related organ and vascular dysfunctions and to explore the underlying mechanisms of arsenic-induced chronic diseases. We used three arsenic exposure metrics: drinking water arsenic concentrations as an external exposure marker and hair and nail arsenic concentrations as internal exposure markers reflecting long-term arsenic exposure at the individual level. Using these multiple arsenic exposure metrics (which showed significant correlations with each other), we investigated the dose-response relationships of these exposure markers with a variety of blood biochemical markers for organ dysfunctions, atherosclerosis, and cancer among study subjects recruited from arsenic-endemic and non-endemic areas in Bangladesh. Our results demonstrate that chronic arsenic exposure can induce pro-inflammatory, pro-oxidative and pro-angiogenic microenvironments in the vascular system, leading to the development of CVDs as well as cancer. Further studies are required to elucidate the effects of neonatal and early-life arsenic exposure on later life in Bangladesh, where over 30% of the population is under 15 years of age.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brammer H, Ravenscroft P. Arsenic in groundwater: a threat to sustainable agriculture in South and South-east Asia. Environ Int. 2009;35:647–54.

    Article  CAS  PubMed  Google Scholar 

  2. Meharg A. Arsenic in rice–understanding a new disaster for South-East Asia. Trends Plant Sci. 2004;9:415–7.

    Article  CAS  PubMed  Google Scholar 

  3. United Nations Children’s Fund, Bangladesh & Bangladesh Bureau of Statistics. Multiple Indicator Cluster Survey (MICS) 2009. New York, NY: United Nations Children’s Fund, Bangladesh & Bangladesh Bureau of Statistics; 2010. Available from: http://www.unicef.org/bangladesh/knowledgecentre_6292.htm. Accessed on 17 May 2018.

    Google Scholar 

  4. Kinniburgh DG, Smedley PL. Arsenic contamination of groundwater in Bangladesh. Technical report WC/00/19, vol. 4. Keyworth: Brit Geol Surv; 2001.

    Google Scholar 

  5. Smith AH, Lingas EO, Rahman M. Contamination of drinking-water by arsenic in Bangladesh: a public health emergency. Bull World Health Organ. 2000;78:1093–103.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. World Health Organization (WHO). Towards an Assessment of the Socioeconomic Impact of Arsenic Poisoning in Bangladesh. WHO/SDE/WSH/00.4. Geneva: WHO; 2000. Available from: http://www.bvsde.ops-oms.org/bvsaca/i/fulltext/impact/impact.pdf. Accessed on 18 May 2018.

    Google Scholar 

  7. Haque R, Mazumder DN, Samanta S, Ghosh N, Kalman D, Smith MM, et al. Arsenic in drinking water and skin lesions: dose-response data from West Bengal, India. Epidimiology. 2003;14:174–82.

    Google Scholar 

  8. Yu RC, Hsu KH, Chen CJ, Froines JR. Arsenic methylation capacity and skin cancer. Cancer Epidemiol Biomarkers Prev. 2000;9:1259–62.

    CAS  PubMed  Google Scholar 

  9. Chen Y, Ahsan H. Cancer burden from arsenic in drinking water in Bangladesh. Am J Public Health. 2004;94:741–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989;130:1123–32.

    Article  CAS  PubMed  Google Scholar 

  11. Rahman M, Tondel M, Ahmad SA, Chowdhury IA, Faruquee MH, Axelson O. Hypertension and arsenic exposure in Bangladesh. Hypertension. 1999;33:74–8.

    Article  CAS  PubMed  Google Scholar 

  12. Nabi AH, Rahman MM, Islam LN. Evaluation of biochemical changes in chronic arsenic poisoning among Bangladeshi patients. Int J Environ Res Public Health. 2005;2:385–93.

    Article  CAS  PubMed  Google Scholar 

  13. Chen Y, Wu F, Graziano JH, Parvez F, Liu M, Paul RR, et al. Arsenic exposure from drinking water, arsenic methylation capacity, and carotid intima-media thickness in Bangladesh. Am J Epidemiol. 2013;178(3):372–81.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hwang SJ, Ballantyne CM, Sharrett AR, Smith LC, Davis CE, Gotto AM Jr, et al. Circulating adhesion molecules VCAM-1, ICAM-1, and E-selectin in carotid atherosclerosis and incident coronary heart disease cases: The Atherosclerosis Risk In Communities (ARIC) study. Circulation. 1997;96:4219–25.

    Article  CAS  PubMed  Google Scholar 

  15. Hossain E, Islam K, Yeasmin F, Karim MR, Rahman M, Agarwal S, et al. Elevated levels of plasma Big endothelin-1 and its relation to hypertension and skin lesions in individuals exposed to arsenic. Toxicol Appl Pharmacol. 2012;259:187–94.

    Article  CAS  PubMed  Google Scholar 

  16. Karim MR, Rahman M, Islam K, Mamun AA, Hossain S, Hossain E, et al. Increases in oxidized low-density lipoprotein and other inflammatory and adhesion molecules with a concomitant decrease in high-density lipoprotein in the individuals exposed to arsenic in Bangladesh. Toxicol Sci. 2013;135:17–25.

    Article  CAS  PubMed  Google Scholar 

  17. Islam K, Haque A, Karim R, Fajol A, Hossain E, Salam K, et al. Dose-response relationship between arsenic exposure and the serum enzymes for liver function tests in the individuals exposed to arsenic: a cross sectional study in Bangladesh. Environ Health. 2011;10:1–11.

    Article  CAS  Google Scholar 

  18. Zhou Y-S, Du H, Cheng M-L, Liu J, Zhang X-J, Xu L. The investigation of death from diseases caused by coal-burning type of arsenic poisoning. Chin J Endemiol. 2002;21:484–6.

    Google Scholar 

  19. Zheng L, Umans J, Yeh F, Francesconi K, Goessler W, Silbergeld E, et al. The association of urine arsenic with prevalent and incident chronic kidney disease: evidence from the strong heart study. Epidemiology. 2015;26:601–12.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim S, Takeuchi A, Kawasumi Y, Endo Y, Lee H, Kim Y. Guillain–Barré syndrome-like neuropathy associated with arsenic exposure. J Occup Health. 2012;54:344–7.

    Article  CAS  PubMed  Google Scholar 

  21. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, et al. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population based cohort study. Int J Epidemiol. 2011;40:1593–604.

    Article  CAS  PubMed  Google Scholar 

  22. United Nations Children’s Fund, Bangladesh. Making economic sense for arsenic mitigation: a case study of Comilla district. Dhaka: United Nations Children’s Fund, Bangladesh; 2011. Available from: http://www.unicef.org/bangladesh/knowledgecentre_6872.htm. Accessed on 21 Aug 2012.

    Google Scholar 

  23. Chakraborty M, Mukherjee A, Ahmed KM. A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: from source to sink. Curr Pollut Rep. 2015;1:220–47.

    Article  CAS  Google Scholar 

  24. Meharg AA, Rahman MM. Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol. 2003;37:229–34.

    Article  CAS  PubMed  Google Scholar 

  25. Das HK, Mitra AK, Sengupta PK, Hossain A, Islam F, Rabbani GH. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environ Int. 2004;30:383–7.

    Article  CAS  PubMed  Google Scholar 

  26. Lindgren A, Vahter M, Dencker L. Autoradiographic studies on the distribution of arsenic in mice and hamster administered 74 As-arsenite or -arsenate. Acta Pharmacol. Toxicol. 1982;51:253–365.

    Article  Google Scholar 

  27. Pomroy C, Charbonneau SM, Mccullough RS, Tam GK. Human retention studies with 74As. Toxicol Appl Pharmacol. 1980;53:550–6.

    Article  CAS  PubMed  Google Scholar 

  28. Kile ML, Hoffman E, Hsueh YM, Afroz S, Quamruzzaman Q, Rahman M, et al. Variability in biomarkers of arsenic exposure and metabolism in adults over time. Environ Health Perspect. 2009;117:455–60.

    Article  CAS  PubMed  Google Scholar 

  29. Lindberg AL, Ekstrom EC, Nermell B, Rahman M, Lonnerdal B, Persson LA, et al. Gender and age differences in the metabolism of inorganic arsenic in a highly exposed population in Bangladesh. Environ Res. 2008;106:110–20.

    Article  CAS  PubMed  Google Scholar 

  30. Chen Y, Wu F, Liu M, Parvez F, Slavkovich V, Eunus M, et al. A prospective study of arsenic exposure, arsenic methylation capacity, and risk of cardiovascular disease in Bangladesh. Environ Health Perspect. 2013;121:832–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Garland M, Morris JS, Rosner BA, Stampfer MJ, Spate VL, Baskett CJ, et al. Toenail trace element levels as biomarkers: reproducibility over a 6-year period. Cancer Epidemiol Biomarkers Prev. 1993;2:493–7.

    CAS  PubMed  Google Scholar 

  32. Hinwood AL, Sim MR, Jolley D, de Klerk N, Bastone EB, Gerostamoulos J, et al. Hair and toenail arsenic concentrations of residents living in areas with high environmental arsenic concentrations. Environ Health Perspect. 2003;111:187–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Agahian B, Lee JS, Nelson JH, Johns RE. Arsenic levels in fingernails as a biological indicator of exposure to arsenic. Am Ind Hyg Assoc J. 1990;51:646–51.

    Article  CAS  PubMed  Google Scholar 

  34. Karagas MR, Tosteson TD, Blum J, Klaue B, Weiss JE, Stannard V, et al. Measurement of low levels of arsenic exposure: a comparison of water and toenail concentrations. Am J Epidemiol. 2000;152:84–90.

    Article  CAS  PubMed  Google Scholar 

  35. Karagas MR, Stukel TA, Morris JS, Tosteson TD, Weis JE, Spencer SK, et al. Skin cancer risk in relation to toenail arsenic concentration in US population-based case-control study. Am J Epidemiol. 2001;153:559–65.

    Article  CAS  PubMed  Google Scholar 

  36. Karagas MR, Stukel TA, Tosteson TD. Assessment of cancer risk and environmental levels of arsenic in New Hampshire. Int J Hyg Environ Health. 2002;205:85–94.

    Article  CAS  PubMed  Google Scholar 

  37. Wilhelm M, Pesch B, Wittsiepe J, Jakubis P, Miskovic P, Keegan T, et al. Comparison of arsenic levels in fingernails with urinary as species as biomarkers of arsenic exposure in residents living close to a coal-burning power plant in Prievidza District, Slovakia. J Expo Anal Environ Epidemiol. 2005;15:89–98.

    Article  CAS  PubMed  Google Scholar 

  38. Guha Mazumder DN, Haque R, Ghosh N, De BK, Santra A, Chakraborty D, et al. Arsenic levels in drinking water and the prevalence of skin lesions in West Bengal, India. Int J Epidemiol. 1998;27:871–7.

    Article  CAS  PubMed  Google Scholar 

  39. Yu HS, Liao WT, Chai CY. Arsenic carcinogenesis in the skin. J Biomed Sci. 2006;13:657–66.

    Article  CAS  PubMed  Google Scholar 

  40. Wong SS, Tan KC, Goh CL. Cutaneous manifestations of chronic arsenicism: review of seventeen cases. J Am Acad Dermatol. 1998;38:179–85.

    Article  CAS  PubMed  Google Scholar 

  41. Ghosh SK, Bandyopadhyay D, Bandyopadhyay SK, Debbarma K. Cutaneous malignant and premalignant conditions caused by chronic arsenicosis from contaminated ground water consumption: a profile of patients from eastern India. Skinmed. 2013;11(4):211–6.

    PubMed  Google Scholar 

  42. Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett. 2014;354:211–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rahman M, Vahter M, Wahed MA, Sohel N, Yunus M, Streatfield PK, El Arifeen S, Bhuiya A, Zaman K, Chowdhury AM, Ekström EC, Persson LA. Prevalence of arsenic exposure and skin lesions. A population based survey in Matlab, Bangladesh. J Epidemiol Community Health. 2006;60:242–8.

    Google Scholar 

  44. Argos M, Kalra T, Pierce BL, Chen Y, Parvez F, Islam T, et al. A prospective study of arsenic exposure from drinking water and incidence of skin lesions in Bangladesh. Am J Epidemiol. 2011;174:185–94.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rahman M, Vahter M, Sohel N, Yunus M, Wahed MA, Streatfield PK, et al. Arsenic exposure and age- and sex-specific risk for skin lesions: a population-based case–referent study in bangladesh. Environ Health Perspect. 2006;114:1847–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Watanabe C, Inaoka T, Kadono T, Nagano M, Nakamura S, Ushijima K, et al. Males in Rural Bangladeshi Communities are more susceptible to chronic arsenic poisoning than females: analyses based on urinary arsenic. Environ Health Perspect. 2001;109:1265–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rasheed H, Kay P, Slack R, Gong YY. The effect of association between inefficient arsenic methylation capacity and demographic characteristics on the risk of skin lesions. Toxicol Appl Pharmacol. 2018;339:42–51.

    Article  CAS  PubMed  Google Scholar 

  48. Tondel M, Rahman M, Magnuson A, Chowdhury IA, Faruquee MH, Ahmad SA. The relationship of arsenic levels in drinking water and the prevalence rate of skin lesions in Bangladesh. Environ Health Perspect. 1999;107:727–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hsu LI, Wu MM, Wang YH, Lee CY, Yang TY, Hsiao BY, et al. Association of environmental arsenic exposure, genetic polymorphisms of susceptible genes, and skin cancers in Taiwan. Biomed Res Int. 2015;2015:892579.

    PubMed  PubMed Central  Google Scholar 

  50. Luo L, Li Y, Gao Y, Zhao L, Feng H, Wei W, et al. Association between arsenic metabolism gene polymorphisms and arsenic-induced skin lesions in individuals exposed to high-dose inorganic arsenic in northwest China. Sci Rep. 2018;8:413.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Karim MR, Salam KA, Hossain E, Islam K, Ali N, Haque A, et al. Interaction between chronic arsenic exposure via drinking water and plasma lactate dehydrogenase activity. Sci Total Environ. 2010;409:278–83.

    Article  CAS  PubMed  Google Scholar 

  52. Wills MR. The biochemical consequences of chronic renal failure. New York, NY: Harvey, Miller and Medcalf; 1971.

    Google Scholar 

  53. Timmis AD. Bedside measurement of cardiac enzymes. Lancet. 1993;341:890–1.

    Article  CAS  PubMed  Google Scholar 

  54. González-Billalabeitia E, Hitt R, Fernández J, Conde E, Martínez-Tello F, Enríquez de Salamanca R, et al. Pre-treatment serum lactate dehydrogenase level is an important prognostic factor in high-grade extremity osteosarcoma. Clin Transl Oncol. 2009;11:479–83.

    Article  PubMed  CAS  Google Scholar 

  55. Liu J, Zheng B, Aposhian HV, Zhou Y, Cheng ML, Zhang AH, et al. Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Perspect. 2002;110:119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ali N, Hoque MA, Haque A, Salam KA, Karim MR, Rahman A, et al. Association between arsenic exposure and plasma cholinesterase activity: a population based study in Bangladesh. Environ Health. 2010;9:36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Ford MD. Acute poisoning. In: Goldman L, Ausiello D, editors. Cecil medicine, Chapter 111. 23rd ed. Philadelphia, PA: Saunders Elsevier; 2007.

    Google Scholar 

  58. Huda N, Hossain S, Rahman M, Karim MR, Islam K, Mamun AA, et al. Elevated levels of plasma uric acid and its relation to hypertension in arsenic-endemic human individuals in Bangladesh. Toxicol Appl Pharmacol. 2014;281:11–8.

    Article  CAS  PubMed  Google Scholar 

  59. Islam MS, Mohanto NC, Karim MR, Aktar S, Hoque MM, Rahman A, et al. Elevated concentrations of serum matrix metalloproteinase-2 and -9 and their associations with circulating markers of cardiovascular diseases in chronic arsenic-exposed individuals. Environ Health. 2015;14:92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Hasibuzzaman MM, Hossain S, Islam MS, Rahman A, Anjum A, Hossain F, et al. Association between arsenic exposure and soluble thrombomodulin: a cross sectional study in Bangladesh. PLoS One. 2017;12:e0175154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Chen Y, Santella RM, Kibriya MG, Wang Q, Kappil M, Verret WJ, et al. Association between arsenic exposure from drinking water and plasma levels of soluble cell adhesion molecules. Environ Health Perspect. 2007;115:1415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen Y, Wu F, Parvez F, Ahmed A, Eunus M, McClintock TR, et al. Arsenic exposure from drinking water and QT-interval prolongation: results from the health effects of arsenic longitudinal study. Environ Health Perspect. 2013;121:421–7.

    Google Scholar 

  63. Blankenberg S, Rupprecht HJ, Bickel C, Peetz D, Hafner G, Tiret L, et al. Circulating cell adhesion molecules and death in patients with coronary artery disease. Circulation. 2001;104:1336–42.

    Article  CAS  PubMed  Google Scholar 

  64. deGoma EM, Leeper NJ, Heidenreich PA. Clinical significance of high-density lipoprotein cholesterol in patients with low low-density lipoprotein cholesterol. J Am Coll Cardiol. 2008;51:49–55.

    Article  CAS  PubMed  Google Scholar 

  65. Heinecke JW. Oxidants and antioxidants in the pathogenesis of atherosclerosis: implications for the oxidized low density lipoprotein hypothesis. Atherosclerosis. 1998;141:1–15.

    Article  CAS  PubMed  Google Scholar 

  66. Steinberg D, Lewis A. Conner memorial lecture. Oxidative modification of LDL and atherogenesis. Circulation. 1997;95:1062–71.

    Article  CAS  PubMed  Google Scholar 

  67. Drexel H. Reducing risk by raising HDL-cholesterol: the evidence. Eur Heart J. 2006;8:23–9.

    Article  CAS  Google Scholar 

  68. Mertens A, Holvoet P. Oxidized LDL and HDL: antagonists in atherothrombosis. FASEB J. 2001;15:2073–84.

    Article  CAS  PubMed  Google Scholar 

  69. Bandeali S, Farmer J. High-density lipoprotein and atherosclerosis: the role of antioxidant activity. Curr Atheroscler Rep. 2012;14:101–7.

    Article  CAS  PubMed  Google Scholar 

  70. Ballou SP, Lozanski G. Induction of inflammatory cytokine release from cultured human monocytes by C-reactive protein. Cytokine. 1992;4:361–8.

    Article  CAS  PubMed  Google Scholar 

  71. Wadham C, Albanese N, Roberts J, Wang L, Bagley CJ, Gamble JR, et al. High-density lipoproteins neutralize C-reactive protein proinflammatory activity. Circulation. 2004;109:2116–22.

    Article  CAS  PubMed  Google Scholar 

  72. Li L, Roumeliotis N, Sawamura T, Renier G. C-reactive protein enhances LOX 1 expression in human aortic endothelial cells: relevance of LOX-1 to C-reactive protein-induced endothelial dysfunction. Circ Res. 2004;95:877–83.

    Article  CAS  PubMed  Google Scholar 

  73. Flammer AJ, Anderson T, Celermajer DS, Creager MA, Deanfield J, Ganz P, et al. The assessment of endothelial function: from research into clinical practice. Circulation. 2012;126:753–67.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zeiher AM, Drexler H, Wollschla¨ger H, Just H. Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation. 1991;83:391–401.

    Article  CAS  PubMed  Google Scholar 

  75. Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006;368:33–47.

    Article  CAS  PubMed  Google Scholar 

  76. Maruyama I, Bell CE, Majerus PW. Thrombomodulin is found on endothelium of arteries, veins, capillaries, lymphatic, and on syncytiotrophoblast of human placenta. J Cell Biol. 1985;101:363–71.

    Article  CAS  PubMed  Google Scholar 

  77. Ishii H, Majerus PW. Thrombomodulin is present in human plasma and urine. J Clin Invest. 1985;76:2178–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ford ES, Li C, Cook S, Choi HK. Serum concentrations of uric acid and the metabolic syndrome among US children and adolescents. Circulation. 2007;115:2526–32.

    Article  CAS  PubMed  Google Scholar 

  79. Schretlen DJ, Inscore AB, Vannorsdall TD, Kraut M, Pearlson GD, Gordon B, et al. Serum uric acid and brain ischemia in normal elderly adults. Neurology. 2007;69:1418–23.

    Article  CAS  PubMed  Google Scholar 

  80. Johnson RJ, Kang DH, Feig D, Kivlighn S, Kanellis J, Watanabe S, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41:1183–90.

    Article  CAS  PubMed  Google Scholar 

  81. Yuan Y, Marshall G, Ferreccio C, Steinmaus C, Selvin S, Liaw J, et al. Acute myocardial infarction mortality in comparison with lung and bladder cancer mortality in arsenic-exposed region II of Chile from 1950 to 2000. Am J Epidemiol. 2007;166:1381–91.

    Article  PubMed  Google Scholar 

  82. Steinmaus CM, Ferreccio C, Romo JA, Yuan Y, Cortes S, Marshall G, Moore LE, Balmes JR, Liaw J, Golden T, Smith AH. Drinking water arsenic in northern Chile: high cancer risks 40 years after exposure cessation. Cancer Epidemiol Biomarkers Prev. 2013;22:623–30.

    Article  CAS  PubMed  Google Scholar 

  83. Wilhelm CS, Kelsey KT, Butler R, Plaza S, Gagne L, Zens MS, et al. Implications of LINE1 methylation for bladder cancer risk in women. Clin Cancer Res. 2010;16:1682–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tajuddin SM, Amaral AF, Fernández AF, Rodríguez-Rodero S, Rodríguez RM, Moore LE, et al. Spanish Bladder Cancer/EPICURO Study Investigators. Genetic and non-genetic predictors of LINE-1 methylation in leukocyte DNA. Environ Health Perspect. 2013;121:650–6.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hossain K, Suzuki T, Hasibuzzaman MM, Islam MS, Rahman A, et al. Chronic exposure to arsenic, LINE-1 hypomethylation, and blood pressure: a cross-sectional study in Bangladesh. Environ Health. 2017;16:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Rahman M, Mamun AA, Karim MR, Islam K, Amin HA, Hossain S, et al. Associations of total arsenic in drinking water, hair and nails with serum vascular endothelial growth factor in arsenic-endemic individuals in Bangladesh. Chemosphere. 2015;120:336–42.

    Article  CAS  PubMed  Google Scholar 

  87. Poon RT, Fan ST, Wong J. Clinical implications of circulating angiogenic factors in cancer patients. J Clin Oncol. 2001;19:1207–25.

    Article  CAS  PubMed  Google Scholar 

  88. Weis SM, Cheresh DA. Pathophysiological consequences of VEGF-induced vascular permeability. Nature. 2005;437:497–504.

    Article  CAS  PubMed  Google Scholar 

  89. Siasos G, Tousoulis D, Kioufis S, Oikonomou E, Siasou Z, Limperi M, et al. Inflammatory mechanisms in atherosclerosis: the impact of matrix metalloproteinases. Curr Top Med Chem. 2012;12:1132–48.

    Article  CAS  PubMed  Google Scholar 

  90. Zheng H, Takahashi H, Murai Y, Cui Z, Nomoto K, Niwa H, et al. Expressions of MMP-2, MMP-9 and VEGF are closely linked to growth, invasion, metastasis and angiogenesis of gastric carcinoma. Anticancer Res. 2006;26:3579–83.

    CAS  PubMed  Google Scholar 

  91. Chung AW, Yang HH, Sigrist MK, Brin G, Chum E, Gourlay WA, et al. Matrix metalloproteinase-2 and −9 exacerbate arterial stiffening and angiogenesis in diabetes and chronic kidney disease. Cardiovasc Res. 2009;84:494–504.

    Article  CAS  PubMed  Google Scholar 

  92. Yasmin, CM ME, Wallace S, Dakham Z, Pulsalkar P, Maki-Petaja K, et al. Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol. 2005;25:372.

    Article  CAS  PubMed  Google Scholar 

  93. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M. Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci. 1998;44:185–90.

    Article  CAS  PubMed  Google Scholar 

  94. Ahmad SA, Sayed MH, Barua S, Khan MH, Faruquee MH, Jalil A, et al. Arsenic in drinking water and pregnancy outcomes. Environ Health Perspect. 2001;109:629–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rahman A, Vahter M, Ekstrom EC, Rahman M, Golam Mustafa AH, Wahed MA, et al. Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol. 2007;165:1389–96.

    Article  PubMed  Google Scholar 

  96. Rahman A, Persson LA, Nermell B, El Arifeen S, Ekstrom EC, Smith AH, et al. Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology. 2010;21:797–804.

    Article  PubMed  Google Scholar 

  97. Vahter M. Effects of arsenic on maternal and fetal health. Annu Rev Nutr. 2009;29:381–99.

    Article  CAS  PubMed  Google Scholar 

  98. Huyck KL, Kile ML, Mahiuddin G, Quamruzzaman Q, Rahman M, Breton CV, et al. Maternal arsenic exposure associated with low birth weight in Bangladesh. J Occup Environ Med. 2007;49(10):1097–104.

    Article  CAS  PubMed  Google Scholar 

  99. Milton AH, Smith W, Rahman B, Hasan Z, Kulsum U, Dear K, et al. Chronic arsenic exposure and adverse pregnancy outcomes in Bangladesh. Epidemiology. 2005;16(1):82–6.

    Article  PubMed  Google Scholar 

  100. Ahmed S, Mahabbat-e Khoda S, Rekha RS, Gardner RM, Ameer SS, Moore S, et al. Arsenic-associated oxidative stress, inflammation, and immune disruption in human placenta and cord blood. Environ Health Perspect. 2011;119:258–64.

    Article  CAS  PubMed  Google Scholar 

  101. Farzan SF, Korrick S, Li Z, Enelow R, Gandolfi AJ, Madan J, et al. In utero arsenic exposure and infant infection in a United States cohort: a prospective study. Environ Res. 2013;126:24–30.

    Article  CAS  PubMed  Google Scholar 

  102. Hawkesworth S, Wagatsuma Y, Kippler M, Fulford AJ, Arifeen SE, Persson LA. Early exposure to toxic metals has a limited effect on blood pressure or kidney function in later childhood, rural Bangladesh. Int J Epidemiol. 2013;42:176–85.

    Article  PubMed  Google Scholar 

  103. Steinmaus C, Ferreccio C, Acevedo J, Yuan Y, Liaw J, Duran V, et al. Increased lung and bladder cancer incidence in adults after in utero and early-life arsenic exposure. Cancer Epidemiol Biomarkers Prev. 2014;23:1529–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hossain, K., Hasibuzzaman, M.M., Himeno, S. (2019). Characteristics and Health Effects of Arsenic Exposure in Bangladesh. In: Yamauchi, H., Sun, G. (eds) Arsenic Contamination in Asia. Current Topics in Environmental Health and Preventive Medicine. Springer, Singapore. https://doi.org/10.1007/978-981-13-2565-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-13-2565-6_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-13-2564-9

  • Online ISBN: 978-981-13-2565-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics