Skip to main content
Log in

Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments

  • Review Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Worldwide industrialization and other human activities have led to a frightening stage of release of hazardous, highly persistent, toxic, insoluble, strongly adsorbed to the soil and high molecular weight ubiquitous polycyclic aromatic hydrocarbons (PAHs) in soils and sediments. The various conventional remediation methods are being used to remediate PAHs with certain drawbacks. Time taking process, high expenditure, excessive quantities of sludge generation, and various chemical requirements do not only make these methods outdated but produce yet much resistant and toxic intermediate metabolites. These disadvantages may be overcome by using a microbial electrochemical system (MES), a booming technology in the field of bioremediation. MES is a green remediation approach that is regulated by electrochemically active microorganisms at the electrode in the system. The key advantage of the system over the conventional methods is it does not involve any additional chemicals, takes less time, and generates minimal sludge or waste during the remediation of PAHs in soils. However, a comprehensive review of the MES towards bioremediation of PAHs adsorbed in soil and sediment is still lacking. Therefore, the present review intended to summarize the recent information on PAHs bioremediation, application, risks, benefits, and challenges based on sediment microbial fuel cell and microbial fuel cell to remediate mount-up industrial sludge, soil, and sediment rich in PAHs. Additionally, bio-electrochemically active microbes, mechanisms, and future perspectives of MES have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

This is a review article, and no data were generated during manuscript preparation.

References

  • Abbas, S. Z., Rafatullah, M., Khan, M. A., & Siddiqui, M. R. (2019). Bioremediation and electricity generation by using open and closed sediment microbial fuel cells. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.03348

    Article  Google Scholar 

  • Abourached, C., Catal, T., & Liu, H. (2014). Efficacy of single-chamber microbial fuel cells for removal of cadmium and zinc with simultaneous electricity production. Water Research, 51, 228–233.

    Article  CAS  Google Scholar 

  • Adelaja, O., Keshavarz, T., & Kyazze, G. (2014). Enhanced biodegradation of phenanthrene using different inoculum types in a microbial fuel cell. Engineering in Life Sciences, 14(2), 218–228.

    Article  CAS  Google Scholar 

  • Adelaja, O., Keshavarz, T., & Kyazze, G. (2017). Treatment of phenanthrene and benzene using microbial fuel cells operated continuously for possible in situ and ex situ applications. International Biodeterioration & Biodegradation, 116, 91–103.

    Article  CAS  Google Scholar 

  • Beech, I. B., & Gaylarde, C. C. (1999). Recent advances in the study of biocorrosion: An overview. Revista De Microbiologia, 30(3), 117–190.

    Article  Google Scholar 

  • Beolchini, F., Hekeu, M., Amato, A., Becci, A., Ribeiro, A. B., Mateus, E. P., & Dell’Anno, A. (2021). Bioremediation of sediments contaminated with polycyclic aromatic hydrocarbons: the technological innovation patented review. International Journal of Environmental Science and Technology, 1–24.

  • Bhagchandanii, D. D., Babu, R. P., Sonawane, J. M., Khanna, N., Pandit, S., Jadhav, D. A., & Prasad, R. (2020). A comprehensive understanding of electro-fermentation. Fermentation, 6(3), 92.

    Article  CAS  Google Scholar 

  • Biffinger, J. C., Fitzgerald, L. A., Ray, R., Little, B. J., Lizewski, S. E., Petersen, E. R., & Nealson, K. H. (2011). The utility of Shewanella japonica for microbial fuel cells. Bioresource Technology, 102(1), 290–297.

    Article  CAS  Google Scholar 

  • Borole, A. P., Reguera, G., Ringeisen, B., Wang, Z. W., Feng, Y., & Kim, B. H. (2011). Electroactive biofilms: Current status and future research needs. Energy & Environmental Science, 4(12), 4813–4834.

    Article  CAS  Google Scholar 

  • Calabrese Barton, S., Gallaway, J., & Atanassov, P. (2004). Enzymatic biofuel cells for implantable and microscale devices. Chemical Reviews, 104(10), 4867–4886.

    Article  Google Scholar 

  • Chandrasekhar, K., & Mohan, S. V. (2012). Bio-electrochemical remediation of real field petroleum sludge as an electron donor with simultaneous power generation facilitates biotransformation of PAH: Effect of substrate concentration. Bioresource Technology, 110, 517–525.

    Article  CAS  Google Scholar 

  • Chandrasekhar, K., Kumar, G., Mohan, S. V., Pandey, A., Jeon, B. H., Jang, M. & Kim, S. H. (2020). Microbial electro-remediation (MER) of hazardous waste in aid of sustainable energy generation and resource recovery. Environmental Technology & Innovation, 19, 100997.

  • Chandrasekhar, K., Velvizhi, G., & Mohan, S. V. (2021). Bio-electrocatalytic remediation of hydrocarbons contaminated soil with integrated natural attenuation and chemical oxidant. Chemosphere, 280, 130649.

    Article  CAS  Google Scholar 

  • Chang, I. S., Jang, J. K., Gil, G. C., Kim, M., Kim, H. J., Cho, B. W., & Kim, B. H. (2004). Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosensors and Bioelectronics, 19(6), 607–613.

    Article  CAS  Google Scholar 

  • Chang, I. S., Moon, H., Jang, J. K., & Kim, B. H. (2005). Improvement of a microbial fuel cell performance as a BOD sensor using respiratory inhibitors. Biosensors and Bioelectronics, 20(9), 1856–1859.

    Article  CAS  Google Scholar 

  • Chen, H., Song, Q., Diao, X., & Zhou, H. (2016). Proteomic and metabolomic analysis on the toxicological effects of benzo [a] pyrene in pearl oyster Pinctada martensii. Aquatic Toxicology, 175, 81–89.

    Article  CAS  Google Scholar 

  • Clauwaert, P., De Paepe, J., Jiang, F., Alonso-Fariñas, B., Vaiopoulou, E., Verliefde, A., & Rabaey, K. (2020). Electrochemical tap water softening: A zero chemical input approach. Water Research, 169, 115263.

    Article  CAS  Google Scholar 

  • Cui, Y., Lai, B., & Tang, X. (2019). Microbial fuel cell-based biosensors. Biosensors, 9(3), 92.

    Article  CAS  Google Scholar 

  • Deng, Q., Li, X., Zuo, J., Ling, A., & Logan, B. E. (2010). Power generation using an activated carbon fiber felt cathode in an upflow microbial fuel cell. Journal of Power Sources, 195(4), 1130–1135.

    Article  CAS  Google Scholar 

  • Entrekin, S. A., Maloney, K. O., Kapo, K. E., Walters, A. W., Evans-White, M. A., & Klemow, K. M. (2015). Stream vulnerability to widespread and emergent stressors: A focus on unconventional oil and gas. PLoS ONE, 10(9), e0137416.

    Article  Google Scholar 

  • Fornero, J. J., Rosenbaum, M., & Angenent, L. T. (2010). Electric power generation from municipal, food, and animal wastewaters using microbial fuel cells. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 22(7–8), 832–843.

    Article  CAS  Google Scholar 

  • Gambino, E., Toscanesi, M., Del Prete, F., Flagiello, F., Falcucci, G., Minutillo, M., & Jannelli, E. (2017). Polycyclic aromatic hydrocarbons (PAHs) degradation and detoxification of water environment in single-chamber air-cathode microbial fuel cells (MFCs). Fuel Cells, 17(5), 618–626.

    Article  CAS  Google Scholar 

  • Gregory, K. B., Bond, D. R., & Lovley, D. R. (2004). Graphite electrodes as electron donors for anaerobic respiration. Environmental Microbiology, 6(6), 596–604.

    Article  CAS  Google Scholar 

  • Guo, Y., Wang, G., Zhang, H., Wen, H., & Li, W. (2020). Effects of biofilm transfer and electron mediators transfer on Klebsiella quasipneumoniae sp. 203 electricity generation performance in MFCs. Biotechnology for Biofuels, 13(1), 1–11.

    Article  Google Scholar 

  • Gupta, R., Raza, N., Bhardwaj, S. K., Vikrant, K., Kim, K. H., & Bhardwaj, N. (2021). Advances in nanomaterial-based electrochemical biosensors for the detection of microbial toxins, pathogenic bacteria in food matrices. Journal of Hazardous Materials, 401, 123379.

    Article  CAS  Google Scholar 

  • Hamelers, H. V., Ter Heijne, A., Sleutels, T. H., Jeremiasse, A. W., Strik, D. P., & Buisman, C. J. (2010). New applications and performance of bioelectrochemical systems. Applied Microbiology and Biotechnology, 85(6), 1673–1685.

    Article  CAS  Google Scholar 

  • Hao, D. C., Li, X. J., Xiao, P. G., & Wang, L. F. (2020). The utility of electrochemical systems in microbial degradation of polycyclic aromatic hydrocarbons: discourse, diversity and design. Frontiers in microbiology. https://doi.org/10.3389/fmicb.2020.557400

    Article  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169(1–3), 1–15.

    Article  CAS  Google Scholar 

  • Hassan, R. Y., Febbraio, F., & Andreescu, S. (2021). Microbial electrochemical systems: Principles, construction and biosensing applications. Sensors, 21(4), 1279.

    Article  CAS  Google Scholar 

  • Heijne, A. T., Liu, F., Weijden, R. V. D., Weijma, J., Buisman, C. J., & Hamelers, H. V. (2010). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science & Technology, 44(11), 4376–4381.

    Article  Google Scholar 

  • Hong, C., Si, Y., Xing, Y., & Li, Y. (2015). Illumina MiSeq sequencing investigation on the contrasting soil bacterial community structures in different iron mining areas. Environmental Science and Pollution Research, 22(14), 10788–10799.

    Article  CAS  Google Scholar 

  • Hsu, L., Masuda, S. A., Nealson, K. H., & Pirbazari, M. (2012). Evaluation of microbial fuel cell Shewanella biocathodes for treatment of chromate contamination. Rsc Advances, 2(13), 5844–5855.

    Article  CAS  Google Scholar 

  • Huang, L., Chen, J., Quan, X., & Yang, F. (2010). Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess and Biosystems Engineering, 33(8), 937–945.

    Article  CAS  Google Scholar 

  • Huang, L., Regan, J. M., & Quan, X. (2011). Electron transfer mechanisms, new applications, and performance of biocathode microbial fuel cells. Bioresource Technology, 102(1), 316–323.

    Article  CAS  Google Scholar 

  • Jadhav, D. A., Ray, S. G., & Ghangrekar, M. M. (2017). Third generation in bio-electrochemical system research–A systematic review on mechanisms for recovery of valuable by-products from wastewater. Renewable and Sustainable Energy Reviews, 76, 1022–1031.

    Article  CAS  Google Scholar 

  • Jain, P. K., Gupta, V. K., Gaur, R. K., Lowry, M., Jaroli, D. P., & Chauhan, U. K. (2011). Bioremediation of petroleum oil contaminated soil and water. Research Journal of Environmental Toxicology, 5(1), 1.

    Article  CAS  Google Scholar 

  • Jiang, Y., Yang, X., Liang, P., Liu, P., & Huang, X. (2018). Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges. Renewable and Sustainable Energy Reviews, 81, 292–305.

    Article  CAS  Google Scholar 

  • Jiao, W., Ouyang, W., Hao, F., & Lin, C. (2015). Anthropogenic impact on diffuse trace metal accumulation in river sediments from agricultural reclamation areas with geochemical and isotopic approaches. Science of the Total Environment, 536, 609–615.

    Article  CAS  Google Scholar 

  • Kang, C. S., Eaktasang, N., Kwon, D. Y., & Kim, H. S. (2014). Enhanced current production by Desulfovibrio desulfuricans biofilm in a mediator-less microbial fuel cell. Bioresource Technology, 165, 27–30.

    Article  CAS  Google Scholar 

  • Karube, I., Matsunaga, T., Mitsuda, S., & Suzuki, S. (1977). Microbial electrode BOD sensors. Biotechnology and Bioengineering, 19(10), 1535–1547.

    Article  CAS  Google Scholar 

  • Kharkwal, S., Tan, Y. C., Lu, M., & Ng, H. Y. (2017). Development and long-term stability of a novel microbial fuel cell BOD sensor with MnO2 catalyst. International Journal of Molecular Sciences, 18(2), 276.

    Article  Google Scholar 

  • Kiely, P. D., Regan, J. M., & Logan, B. E. (2011). The electric picnic: Synergistic requirements for exoelectrogenic microbial communities. Current Opinion in Biotechnology, 22(3), 378–385.

    Article  CAS  Google Scholar 

  • Kim, B. H., Chang, I. S., Cheol Gil, G., Park, H. S., & Kim, H. J. (2003). Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnology Letters, 25(7), 541–545.

    Article  CAS  Google Scholar 

  • Kim, B., Jang, N., Lee, M., Jang, J. K., & Chang, I. S. (2021). Microbial fuel cell driven mineral rich wastewater treatment process for circular economy by creating virtuous cycles. Bioresource Technology, 320, 124254.

    Article  CAS  Google Scholar 

  • Kim, H. J., Park, H. S., Hyun, M. S., Chang, I. S., Kim, M., & Kim, B. H. (2002). A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella Putrefaciens. Enzyme and Microbial Technology, 30(2), 145–152.

    Article  CAS  Google Scholar 

  • Koch, C., & Harnisch, F. (2016). Is there a specific ecological niche for electroactive microorganisms? ChemElectroChem, 3(9), 1282–1295.

    Article  CAS  Google Scholar 

  • Kumar, B., Agrawal, K., & Verma, P. (2021). Microbial electrochemical system: A sustainable approach for mitigation of toxic dyes and heavy metals from wastewater. Journal of Hazardous, Toxic, and Radioactive Waste, 25(2), 04020082.

    Article  CAS  Google Scholar 

  • Kumar, R., Singh, L., & Zularisam, A. W. (2016). Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renewable and Sustainable Energy Reviews, 56, 1322–1336.

    Article  CAS  Google Scholar 

  • Kumari, S., Regar, R. K., Bajaj, A., Ch, R., Satyanarayana, G. N. V., Mudiam, M. K. R., & Manickam, N. (2017). Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: Characterization of nid genes and effect of surfactants on degradation. Indian Journal of Microbiology, 57(1), 60–67.

    Article  CAS  Google Scholar 

  • Kumari, S., Regar, R. K., & Manickam, N. (2018). Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria. Bioresource Technology, 254, 174–179.

    Article  CAS  Google Scholar 

  • Lahri, D., Nag, M., Dey, A., Sarkar, T., Joshi, S., Pandit, S., Das, A. P., Pati, S., Pattanaik, S., Tilak, V. K. & Ray, R. R. (2021). Biofilm Mediated Degradation of Petroleum Products. Geomicrobiology Journal, 1–10.

  • Li, F., Guo, S., & Hartog, N. (2012). Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochimica Acta, 85, 228–234.

    Article  CAS  Google Scholar 

  • Li, H., Tian, Y., Qu, Y., Qiu, Y., Liu, J., & Feng, Y. (2017). A pilot-scale benthic microbial electrochemical system (BMES) for enhanced organic removal in sediment restoration. Scientific Reports, 7(1), 1–9.

    Google Scholar 

  • Li, X., Li, Y., Zhang, X., Zhao, X., Sun, Y., Weng, L., & Li, Y. (2019). Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. Science of the Total Environment, 651, 796–806.

    Article  CAS  Google Scholar 

  • Li, X., Wang, X., Wan, L., Zhang, Y., Li, N., Li, D., & Zhou, Q. (2016a). Enhanced biodegradation of aged petroleum hydrocarbons in soils by glucose addition in microbial fuel cells. Journal of Chemical Technology & Biotechnology, 91(1), 267–275.

    Article  CAS  Google Scholar 

  • Li, X., Wang, X., Ren, Z. J., Zhang, Y., Li, N. & Zhou, Q. (2015). Sand amendment enhances bioelectrochemical remediation of petroleum hydrocarbon contaminated soil. Chemosphere, 141, 62–70.

  • Li, X., Wang, X., Zhang, Y., Cheng, L., Liu, J., Li, F., & Zhou, Q. (2014). Extended petroleum hydrocarbon bioremediation in saline soil using Pt-free multianodes microbial fuel cells. Rsc Advances, 4(104), 59803–59808.

    Article  CAS  Google Scholar 

  • Li, X., Wang, X., Zhang, Y., Zhao, Q., Yu, B., Li, Y., & Zhou, Q. (2016b). Salinity and conductivity amendment of soil enhanced the bioelectrochemical degradation of petroleum hydrocarbons. Scientific Reports, 6(1), 1–11.

    Google Scholar 

  • Li, Y., Zhang, B., Cheng, M., Li, Y., Hao, L., & Guo, H. (2016c). Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. Journal of Hazardous Materials, 306, 8–12.

    Article  CAS  Google Scholar 

  • Liang, Y., Ji, M., Zhai, H., & Zhao, J. (2021). Organic matter composition, BaP biodegradation and microbial communities at sites near and far from the bioanode in a soil microbial fuel cell. Science of the Total Environment, 772, 144919.

    Article  CAS  Google Scholar 

  • Liang, Y., Zhai, H., Liu, B., Ji, M., & Li, J. (2020). Carbon nanomaterial-modified graphite felt as an anode enhanced the power production and polycyclic aromatic hydrocarbon removal in sediment microbial fuel cells. Science of the Total Environment, 713, 136483.

    Article  CAS  Google Scholar 

  • Lincy, M. A., Kumar, B. A., Vasantha, V. S., & Varalakshmi, P. (2015). Microbial fuel cells: A promising alternative energy source. Opportunities and Challenges. https://doi.org/10.1201/b18718-6

    Article  Google Scholar 

  • Liu, B., Zhai, H., Liang, Y., Ji, M., & Wang, R. (2019). Increased power production and removal efficiency of polycyclic aromatic hydrocarbons by plant pumps in sediment microbial electrochemical systems: A preliminary study. Journal of Hazardous Materials, 380, 120896.

    Article  CAS  Google Scholar 

  • Liu, F., Liu, J., Chen, Q., Wang, B., & Cao, Z. (2013). Pollution characteristics and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the southern part of the Haihe River system in China. Chinese Science Bulletin, 58(27), 3348–3356.

    Article  CAS  Google Scholar 

  • Liu, H., Ramnarayanan, R., & Logan, B. E. (2004). Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environmental Science & Technology, 38(7), 2281–2285.

    Article  CAS  Google Scholar 

  • Logan, B. E. (2009). Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 7(5), 375–381.

    Article  CAS  Google Scholar 

  • Logan, B. E., Rossi, R., Ragab, A., & Saikaly, P. E. (2019). Electroactive microorganisms in bioelectrochemical systems. Nature Reviews Microbiology, 17(5), 307–319.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2011). Powering microbes with electricity: Direct electron transfer from electrodes to microbes. Environmental Microbiology Reports, 3(1), 27–35.

    Article  CAS  Google Scholar 

  • Lu, L., Huggins, T., Jin, S., Zuo, Y., & Ren, Z. J. (2014). Microbial metabolism and community structure in response to bioelectrochemically enhanced remediation of petroleum hydrocarbon-contaminated soil. Environmental Science & Technology, 48(7), 4021–4029.

    Article  CAS  Google Scholar 

  • Lyon, D. Y., Buret, F., Vogel, T. M., & Monier, J. M. (2010). Is resistance futile? Changing external resistance does not improve microbial fuel cell performance. Bioelectrochemistry, 78(1), 2–7.

    Article  CAS  Google Scholar 

  • Malvankar, N. S., Yalcin, S. E., Tuominen, M. T., & Lovley, D. R. (2014). Visualization of charge propagation along individual pili proteins using ambient electrostatic force microscopy. Nature Nanotechnology, 9(12), 1012–1017.

    Article  CAS  Google Scholar 

  • Mason, O. U., Scott, N. M., Gonzalez, A., Robbins-Pianka, A., Bælum, J., Kimbrel, J., & Jansson, J. K. (2014). Metagenomics reveals sediment microbial community response to Deepwater Horizon oil spill. The ISME Journal, 8(7), 1464–1475.

    Article  CAS  Google Scholar 

  • McAnulty, M. J., Poosarla, G. V., Kim, K. Y., Jasso-Chávez, R., Logan, B. E., & Wood, T. K. (2017). Electricity from methane by reversing methanogenesis. Nature Communications, 8(1), 1–8.

    Article  Google Scholar 

  • Menzie, C. A., Potocki, B. B., & Santodonato, J. (1992). Exposure to carcinogenic PAHs in the environment. Environmental Science & Technology, 26(7), 1278–1284.

    Article  CAS  Google Scholar 

  • Mohan, S. V., & Chandrasekhar, K. (2011). Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation. Bioresource Technology, 102(20), 9532–9541.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Raghavulu, S. V., & Sarma, P. N. (2008). Influence of anodic biofilm growth on bioelectricity production in single chambered mediatorless microbial fuel cell using mixed anaerobic consortia. Biosensors and Bioelectronics, 24(1), 41–47.

    Article  Google Scholar 

  • Morris, J. M., & Jin, S. (2007). Feasibility of using microbial fuel cell technology for bioremediation of hydrocarbons in groundwater. Journal of Environmental Science and Health, Part A, 43(1), 18–23.

    Article  Google Scholar 

  • Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M., & Lovley, D. R. (2010). Microbial electrosynthesis: Feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. Mbio, 1(2), e00103-e110.

    Article  Google Scholar 

  • Newton, G. J., Mori, S., Nakamura, R., Hashimoto, K., & Watanabe, K. (2009). Analyses of current-generating mechanisms of Shewanella loihica PV-4 and Shewanella oneidensis MR-1 in microbial fuel cells. Applied and Environmental Microbiology, 75(24), 7674–7681.

    Article  CAS  Google Scholar 

  • Pant, D., Van Bogaert, G., Alvarez-Gallego, Y., Diels, L., & Vanbroekhoven, K. (2016). Evaluation of bioelectrogenic potential of four industrial effluents as substrate for low-cost Microbial Fuel Cells operation. Environmental Engineering & Management Journal (EEMJ), 15(8), 1897–1904.

    Article  CAS  Google Scholar 

  • Pant, D., Van Bogaert, G., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technology, 101(6), 1533–1543.

    Article  CAS  Google Scholar 

  • Pasupuleti, S. B., Srikanth, S., Dominguez-Benetton, X., Mohan, S. V., & Pant, D. (2016). Dual gas diffusion cathode design for microbial fuel cell (MFC): Optimizing the suitable mode of operation in terms of bioelectrochemical and bioelectro-kinetic evaluation. Journal of Chemical Technology & Biotechnology, 91(3), 624–639.

    Article  CAS  Google Scholar 

  • Pataranawat, P., Parkpian, P., Polprasert, C., Delaune, R. D., & Jugsujinda, A. (2007). Mercury emission and distribution: Potential environmental risks at a small-scale gold mining operation, Phichit Province, Thailand. Journal of Environmental Science and Health, Part A, 42(8), 1081–1093.

    Article  CAS  Google Scholar 

  • Patel, A. B., Shaikh, S., Jain, K. R., Desai, C., & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: Sources, toxicity, and remediation approaches. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.562813

    Article  Google Scholar 

  • Pham, T. H., Rabaey, K., Aelterman, P., Clauwaert, P., De Schamphelaire, L., Boon, N., & Verstraete, W. (2006). Microbial fuel cells in relation to conventional anaerobic digestion technology. Engineering in Life Sciences, 6(3), 285–292.

    Article  CAS  Google Scholar 

  • Pinto, D. (2016). Electronic transfer within a microbial fuel cell. Better understanding of Experimental and Structural Parameters at the Interface between Electro-active Bacteria and Carbon-based Electrodes (Doctoral dissertation, Université Pierre et Marie Curie-Paris VI).

  • Proft, T., & Baker, E. N. (2009). Pili in Gram-negative and Gram-positive bacteria—structure, assembly and their role in disease. Cellular and Molecular Life Sciences, 66(4), 613–635.

    Article  CAS  Google Scholar 

  • Qiao, Y., Li, C. M., Bao, S. J., & Bao, Q. L. (2007). Carbon nanotube/polyaniline composite as anode material for microbial fuel cells. Journal of Power Sources, 170(1), 79–84.

    Article  CAS  Google Scholar 

  • Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M., & Verstraete, W. (2004). Biofuel cells select for microbial consortia that self-mediate electron transfer. Applied and Environmental Microbiology, 70(9), 5373–5382.

    Article  CAS  Google Scholar 

  • Rabaey, K., & Rozendal, R. A. (2010). Microbial electrosynthesis—revisiting the electrical route for microbial production. Nature Reviews Microbiology, 8(10), 706–716.

    Article  CAS  Google Scholar 

  • Raja, R., Nayak, A. K., Shukla, A. K., Rao, K. S., Gautam, P., Lal, B., & Patra, D. K. (2015). Impairment of soil health due to fly ash-fugitive dust deposition from coal-fired thermal power plants. Environmental Monitoring and Assessment, 187(11), 1–18.

    Article  CAS  Google Scholar 

  • Reguera, G., Nevin, K. P., Nicoll, J. S., Covalla, S. F., Woodard, T. L., & Lovley, D. R. (2006). Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Applied and Environmental Microbiology, 72(11), 7345–7348.

    Article  CAS  Google Scholar 

  • Richter, H., Nevin, K. P., Jia, H., Lowy, D. A., Lovley, D. R., & Tender, L. M. (2009). Cyclic voltammetry of biofilms of wild type and mutant Geobacter sulfurreducens on fuel cell anodes indicates possible roles of OmcB, OmcZ, type IV pili, and protons in extracellular electron transfer. Energy & Environmental Science, 2(5), 506–516.

    Article  CAS  Google Scholar 

  • Rodrigo, M. A., Oturan, N., & Oturan, M. A. (2014). Electrochemically assisted remediation of pesticides in soils and water: A review. Chemical Reviews, 114(17), 8720–8745.

    Article  CAS  Google Scholar 

  • Roller, S. D., Bennetto, H. P., Delaney, G. M., Mason, J. R., Stirling, J. L., & Thurston, C. F. (1984). Electron-transfer coupling in microbial fuel cells: 1. comparison of redox-mediator reduction rates and respiratory rates of bacteria. Journal of Chemical Technology and Biotechnology. Biotechnology, 34(1), 3–12.

    Article  CAS  Google Scholar 

  • Rosenbaum, M., Aulenta, F., Villano, M., & Angenent, L. T. (2011). Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresource Technology, 102(1), 324–333.

    Article  CAS  Google Scholar 

  • Rothermich, M. M., Hayes, L. A., & Lovley, D. R. (2002). Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environmental Science & Technology, 36(22), 4811–4817.

    Article  CAS  Google Scholar 

  • Roy, S., Schievano, A., & Pant, D. (2016). Electro-stimulated microbial factory for value added product synthesis. Bioresource Technology, 213, 129–139.

    Article  CAS  Google Scholar 

  • Sangeetha, T., & Muthukumar, M. (2013). Influence of electrode material and electrode distance on bioelectricity production from sago-processing wastewater using microbial fuel cell. Environmental Progress & Sustainable Energy, 32(2), 390–395.

    Article  CAS  Google Scholar 

  • Schröder, U., Harnisch, F., & Angenent, L. T. (2015). Microbial electrochemistry and technology: Terminology and classification. Energy & Environmental Science, 8(2), 513–519.

    Article  Google Scholar 

  • Selim, H. M., Kamal, A. M., Ali, D. M., & Hassan, R. Y. (2017). Bioelectrochemical systems for measuring microbial cellular functions. Electroanalysis, 29(6), 1498–1505.

    Article  CAS  Google Scholar 

  • Sharma, M., Nandy, A., Taylor, N., Venkatesan, S. V., Kollath, V. O., Karan, K., & Gieg, L. M. (2020). Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site. Journal of Hazardous Materials, 389, 121845.

    Article  CAS  Google Scholar 

  • Sherafatmand, M., & Ng, H. Y. (2015). Using sediment microbial fuel cells (SMFCs) for bioremediation of polycyclic aromatic hydrocarbons (PAHs). Bioresource Technology, 195, 122–130.

    Article  CAS  Google Scholar 

  • Simões, M. F., Maiorano, A. E., dos Santos, J. G., Peixoto, L., de Souza, R. F. B., Neto, A. O., & Ottoni, C. A. (2019). Microbial fuel cell-induced production of fungal laccase to degrade the anthraquinone dye Remazol Brilliant Blue R. Environmental Chemistry Letters, 17(3), 1413–1420.

    Article  Google Scholar 

  • Sleutels, T. H., Ter Heijne, A., Buisman, C. J., & Hamelers, H. V. (2012). Bioelectrochemical systems: An outlook for practical applications. Chemsuschem, 5(6), 1012–1019.

    Article  CAS  Google Scholar 

  • Sonawane, J. M., Ezugwu, C. I., & Ghosh, P. C. (2020). Microbial fuel cell-based biological oxygen demand sensors for monitoring wastewater: State-of-the-art and practical applications. ACS Sensors, 5(8), 2297–2316.

    Article  CAS  Google Scholar 

  • Srikanth, S., Kumar, M., & Puri, S. K. (2018). Bio-electrochemical system (BES) as an innovative approach for sustainable waste management in petroleum industry. Bioresource Technology, 265, 506–518.

    Article  CAS  Google Scholar 

  • Srikanth, S., Marsili, E., Flickinger, M. C., & Bond, D. R. (2008). Electrochemical characterization of Geobacter sulfurreducens cells immobilized on graphite paper electrodes. Biotechnology and Bioengineering, 99(5), 1065–1073.

    Article  CAS  Google Scholar 

  • Srivastava, P., Abbassi, R., Garaniya, V., Lewis, T., & Yadav, A. K. (2020). Performance of pilot-scale horizontal subsurface flow constructed wetland coupled with a microbial fuel cell for treating wastewater. Journal of Water Process Engineering, 33, 100994.

    Article  Google Scholar 

  • Steinbusch, K. J., Hamelers, H. V., Schaap, J. D., Kampman, C., & Buisman, C. J. (2010). Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environmental Science & Technology, 44(1), 513–517.

    Article  CAS  Google Scholar 

  • Sulonen, M. L., Kokko, M. E., Lakaniemi, A. M., & Puhakka, J. A. (2015). Electricity generation from tetrathionate in microbial fuel cells by acidophiles. Journal of Hazardous Materials, 284, 182–189.

    Article  CAS  Google Scholar 

  • Tsai, T. T., Sah, J., & Kao, C. M. (2010). Application of iron electrode corrosion enhanced electrokinetic-Fenton oxidation to remediate diesel contaminated soils: A laboratory feasibility study. Journal of Hydrology, 380(1–2), 4–13.

    Article  CAS  Google Scholar 

  • USEPA. (1994). Amendments to 1990 clean air act-list of 189 hazardous air pollutants. US Environmental Protection Agency.

    Google Scholar 

  • Wang, H., Chen, P., Zhang, S., Jiang, J., Hua, T., & Li, F. (2022). Degradation of pyrene using single-chamber air-cathode microbial fuel cells: Electrochemical parameters and bacterial community changes. Science of the Total Environment, 804, 150153.

    Article  CAS  Google Scholar 

  • Wang, H., Luo, H., Fallgren, P. H., Jin, S., & Ren, Z. J. (2015). Bioelectrochemical system platform for sustainable environmental remediation and energy generation. Biotechnology Advances, 33(3–4), 317–334.

    Article  Google Scholar 

  • Wang, H., & Ren, Z. J. (2013). A comprehensive review of microbial electrochemical systems as a platform technology. Biotechnology Advances, 31(8), 1796–1807.

    Article  Google Scholar 

  • Wang, J., Song, X., Li, Q., Bai, H., Zhu, C., Weng, B., & Bai, J. (2019). Bioenergy generation and degradation pathway of phenanthrene and anthracene in a constructed wetland-microbial fuel cell with an anode amended with nZVI. Water Research, 150, 340–348.

    Article  CAS  Google Scholar 

  • Wang, X., Cai, Z., Zhou, Q., Zhang, Z., & Chen, C. (2012). Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells. Biotechnology and Bioengineering, 109(2), 426–433.

    Article  CAS  Google Scholar 

  • Wang, Z., Lim, B., & Choi, C. (2011). Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology, 102(10), 6304–6307.

    Article  CAS  Google Scholar 

  • Wang, Z., Lim, B. S., Lu, H., Fan, J., & Choi, C. S. (2010). Cathodic reduction of Cu 2+ and electric power generation using a microbial fuel cell. Bulletin of the Korean Chemical Society, 31(7), 2025–2030.

    Article  CAS  Google Scholar 

  • Wei, J., Liang, P., & Huang, X. (2011). Recent progress in electrodes for microbial fuel cells. Bioresource Technology, 102(20), 9335–9344.

    Article  CAS  Google Scholar 

  • Wilcke, W. (2000). Synopsis polycyclic aromatic hydrocarbons (PAHs) in soil—a review. Journal of Plant Nutrition and Soil Science, 163(3), 229–248.

    Article  CAS  Google Scholar 

  • Xia, C., Xu, M., Liu, J., Guo, J. & Yang, Y. (2015). Sediment microbial fuel cell prefers to degrade organic chemicals with higher polarity. Bioresource Technology, 190, 420–423.

  • Xing, W., Li, D., Li, J., Hu, Q., & Deng, S. (2016). Nitrate removal and microbial analysis by combined micro-electrolysis and autotrophic denitrification. Bioresource Technology, 211, 240–247.

    Article  CAS  Google Scholar 

  • Xu, P., Xiao, E., Zeng, L., He, F., & Wu, Z. (2019). Enhanced degradation of pyrene and phenanthrene in sediments through synergistic interactions between microbial fuel cells and submerged macrophyte Vallisneria spiralis. Journal of Soils and Sediments, 19(5), 2634–2649.

    Article  CAS  Google Scholar 

  • Yan, Z., He, Y., Cai, H., Van Nostrand, J. D., He, Z., Zhou, J., & Jiang, H. L. (2017). Interconnection of key microbial functional genes for enhanced benzo [a] pyrene biodegradation in sediments by microbial electrochemistry. Environmental Science & Technology, 51(15), 8519–8529.

    Article  CAS  Google Scholar 

  • Yan, Z., Jiang, H., Cai, H., Zhou, Y., & Krumholz, L. R. (2015). Complex interactions between the macrophyte Acorus calamus and microbial fuel cells during pyrene and benzo [a] pyrene degradation in sediments. Scientific Reports, 5(1), 1–11.

    Google Scholar 

  • Yan, Z., Song, N., Cai, H., Tay, J. H., & Jiang, H. (2012). Enhanced degradation of phenanthrene and pyrene in freshwater sediments by combined employment of sediment microbial fuel cell and amorphous ferric hydroxide. Journal of Hazardous Materials, 199, 217–225.

    Article  Google Scholar 

  • Yang, H., Zhou, M., Liu, M., Yang, W., & Gu, T. (2015). Microbial fuel cells for biosensor applications. Biotechnology Letters, 37(12), 2357–2364.

    Article  CAS  Google Scholar 

  • Yang, Y., Xu, M., Guo, J., & Sun, G. (2012). Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochemistry, 47(12), 1707–1714.

    Article  CAS  Google Scholar 

  • Yao, S., He, Y. L., Song, B. Y., & Li, X. Y. (2016). A two-dimensional, two-phase mass transport model for microbial fuel cells. Electrochimica Acta, 212, 201–211.

    Article  CAS  Google Scholar 

  • Yu, B., Tian, J., & Feng, L. (2017). Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community. Journal of Hazardous Materials, 336, 110–118.

    Article  CAS  Google Scholar 

  • Zhang, F., Chen, G., Hickner, M. A., & Logan, B. E. (2012). Novel anti-flooding poly (dimethylsiloxane)(PDMS) catalyst binder for microbial fuel cell cathodes. Journal of Power Sources, 218, 100–105.

    Article  CAS  Google Scholar 

  • Zhang, F., Cheng, S., Pant, D., Van Bogaert, G., & Logan, B. E. (2009). Power generation using an activated carbon and metal mesh cathode in a microbial fuel cell. Electrochemistry Communications, 11(11), 2177–2179.

    Article  CAS  Google Scholar 

  • Zhang, H., Chao, B., Gao, X., Cao, X., & Li, X. (2022). Effect of starch-derived organic acids on the removal of polycyclic aromatic hydrocarbons in an aquaculture-sediment microbial fuel cell. Journal of Environmental Management, 311, 114783.

    Article  CAS  Google Scholar 

  • Zhang, T., Gannon, S. M., Nevin, K. P., Franks, A. E., & Lovley, D. R. (2010). Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environmental Microbiology, 12(4), 1011–1020.

    Article  CAS  Google Scholar 

  • Zhang, X., Li, R., Song, J., Ren, Y., Luo, X., Li, Y., Li, X., Li, T., Wang, X., & Zhou, Q. (2021). Combined phyto-microbial-electrochemical system enhanced the removal of petroleum hydrocarbons from soil: A profundity remediation strategy. Journal of Hazardous Materials, 420, 126592.

    Article  CAS  Google Scholar 

  • Zhang, Z., & Lo, I. (2015). Biostimulation of petroleum-hydrocarbon-contaminated marine sediment with co-substrate: Involved metabolic process and microbial community. Applied Microbiology and Biotechnology, 99(13), 5683–5696.

    Article  CAS  Google Scholar 

  • Zhao, L., Deng, J., Hou, H., Li, J., & Yang, Y. (2019). Investigation of PAH and oil degradation along with electricity generation in soil using an enhanced plant-microbial fuel cell. Journal of Cleaner Production, 221, 678–683.

    Article  CAS  Google Scholar 

  • Zhao, Y., Li, Z., Ma, J., Yun, H., Qi, M., Ma, X., & Liang, B. (2018). Enhanced bioelectroremediation of a complexly contaminated river sediment through stimulating electroactive degraders with methanol supply. Journal of Hazardous Materials, 349, 168–176.

    Article  CAS  Google Scholar 

  • Zhou, L., Deng, D., Zhang, D., Chen, Q., Kang, J., Fan, N., & Liu, Y. (2016). Microbial electricity generation and isolation of exoelectrogenic bacteria based on petroleum hydrocarbon-contaminated soil. Electroanalysis, 28(7), 1510–1516.

    Article  CAS  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.

    Article  CAS  Google Scholar 

  • Zhou, T., Han, H., Liu, P., Xiong, J., Tian, F., & Li, X. (2017). Microbial fuels cell-based biosensor for toxicity detection: A review. Sensors, 17(10), 2230.

    Article  Google Scholar 

  • Zuo, Y., Xing, D., Regan, J. M., & Logan, B. E. (2008). Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 74(10), 3130–3137.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the laboratory “Soil Health” of the Southern Federal University with the financial support of the Ministry of Science and higher Education of the Russian Federal, agreement no. 075-15-2022-1122.

Funding

The authors declare that no funding was received during the preparation of the present manuscript.

Author information

Authors and Affiliations

Authors

Contributions

SK, VDR, SS, and TM: have been involved in idea generation and were involved in manuscript preparation. All the authors reviewed and edited the content.

Corresponding author

Correspondence to Smita Kumari.

Ethics declarations

Conflict of interest

All the authors declare that there are conflicts of interest whatsoever.

Human and animal rights

Presented work does not involve animal subjects.

Consent to participate

All authors were actively involved in this work and given consent for the publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, S., Rajput, V.D., Sushkova, S. et al. Microbial electrochemical system: an emerging technology for remediation of polycyclic aromatic hydrocarbons from soil and sediments. Environ Geochem Health 45, 9451–9467 (2023). https://doi.org/10.1007/s10653-022-01356-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01356-z

Keywords

Navigation