Skip to main content

Advertisement

Log in

The rhizospheric transformation and bioavailability of mercury in pepper plants are influenced by selected Chinese soil types

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Understanding and prediction of mercury (Hg) phytoavailability in vegetable–soil systems is essential for controlling food chain contamination and safe vegetable production as Hg-contaminated soils pose a serious threat to human health. In this study, four typical Chinese soils (Heilongjiang, Chongqing, Yunnan, and Jilin) with varied physicochemical properties were spiked with HgCl2 to grow sweet pepper (Capsicum annuum L.) in a pot experiment under greenhouse condition. The chemical fractionation revealed a significant decrease in exchangeable Hg, while an increase in organically bound Hg in the rhizosphere soil (RS) compared to bulk soil (BS). This observation strongly highlights the vital role of organic matter on the rhizospheric Hg transformation irrespective of contamination levels and soil properties. Stepwise multiple linear regression (SMLR) analysis between Hg concentration in plants, Hg fractions in RS and BS, and soil properties showed that Hg in plant parts was significantly influenced by soil total Hg (THg) (R2 = 0.90), soil clay (R2 = 0.99), amorphous manganese oxides (amorphous Mn) (R2 = 0.97), amorphous iron oxides (amorphous Fe) (R2 = 0.70), and available Hg (R2 = 0.97) in BS. Nevertheless, in the case of RS, Hg accumulation in plants was affected by soil THg (R2 = 0.99), amorphous Mn (R2 = 0.97), amorphous Fe oxides (R2 = 0.66), soil pH, and organically bound Hg fraction (R2 = 0.96). Among all the evaluated soils (n = 04), metal (mercury) concentration in terms of plant uptake was reported highest in the Jilin soil. Based on SMLR analysis, the results suggested that the phytoavailability of Hg was mainly determined by THg and metal oxides regardless of the rhizospheric effect. These findings facilitate the estimation of Hg phytoavailability and ecological risk that may exist from Hg-contaminated areas where pepper is the dominant vegetable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adamo, P., Agrelli, D., & Zampella, M. (2018). Chemical speciation to assess bioavailability, bioaccessibility and geochemical forms of potentially toxic metals (PTMS) in polluted soils. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental Geochemistry (pp. 153–194). Elsevier.

    Google Scholar 

  • Ali, A., Guo, D., Mahar, A., Wang, Z., Muhammad, D., Li, R., Wang, P., Shen, F., Xue, Q., & Zhang, Z. (2017). Role of Streptomyces pactum in phytoremediation of trace elements by Brassica juncea in mine polluted soils. Ecotoxicology and Environmental Safety, 144, 387–395.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., Prasad, M. N., Wenzel, W. W., & Rinklebe, J. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth-Science Reviews, 171, 621–645.

    Article  CAS  Google Scholar 

  • Bagheri, G., Zahedi, B., Darvishzadeh, R., & Hajiali, A. (2017). Investigation on morphological and physiological variation of some sweet pepper ecotypes (Capsicum annuum L.). Journal of Horticulture Science, 31(1).

  • Bais, H. P., Weir, T. L., Perry, L. G., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  Google Scholar 

  • Beckers, F., & Rinklebe, J. (2017). Cycling of mercury in the environment: Sources, fate, and human health implications: A review. Critical Reviews in Environmental Science and Technology, 47, 693–794.

    Article  CAS  Google Scholar 

  • Cakmak, I. (2002). Plant nutrition research: Priorities to meet human needs for food in sustainable ways. Plant and Soil, 247, 3–24.

    Article  CAS  Google Scholar 

  • De Melo, W. J. (2016). Mercury sorption and desorption by tropical soils, competitive sorption and transport of heavy metals in soils and geological media (pp. 155–178). CRC Press.

    Google Scholar 

  • Ding, C., Zhang, T., Li, X., & Wang, X. (2014). Major controlling factors and prediction models for mercury transfer from soil to carrot. Journal of Soils and Sediments, 14, 1136–1146.

    Article  CAS  Google Scholar 

  • Hang, X., Gan, F., Wang, J., Chen, X., Chen, Y., Wang, H., Zhou, J., & Du, C. (2016). Soil mercury accumulation and transference to different crop grains. Human and Ecological Risk Assessment: an International Journal, 22, 1242–1252.

    Article  CAS  Google Scholar 

  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. New Phytologist, 168, 293–303.

    Article  CAS  Google Scholar 

  • Hinsinger, P., Plassard, C., Tang, C., & Jaillard, B. (2003). Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: A review. Plant and Soil, 248, 43–59.

    Article  CAS  Google Scholar 

  • Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nature Reviews Earth & Environment, 1(7), 366–381.

    Article  Google Scholar 

  • Huang, M., Zhou, S., Sun, B., & Zhao, Q. (2008). Heavy metals in wheat grain: Assessment of potential health risk for inhabitants in Kunshan, China. Science of the Total Environment, 405, 54–61.

    Article  CAS  Google Scholar 

  • Hussain, S., Yang, J., Hussain, J., Hussain, I., Kumar, M., Ullah, S., Zhang, L., Xia, X., Jia, Y., Ma, Y., & Gao, Y. (2021). Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. Environmental Research. https://doi.org/10.1016/j.envres.2021.112190

    Article  Google Scholar 

  • Issaro, N., Abi-Ghanem, C., & Bermond, A. (2009). Fractionation studies of mercury in soils and sediments: A review of the chemical reagents used for mercury extraction. Analytica Chimica Acta, 631, 1–12.

    Article  CAS  Google Scholar 

  • Krishnamurti, G. S. R., & Naidu, R. (2002). Solid solution speciation and phytoavailability of copper and zinc in soils. Environmental Science and Technology, 36, 2645–2651.

    Article  CAS  Google Scholar 

  • Lazaro, J. D., Kidd, P., & Martinez, C. M. (2006). A phytogeochemical study of the Trás-os-Montes region (NE Portugal): Possible species for plant-based soil remediation technologies. Science of the Total Environment, 354, 265–277.

    Article  Google Scholar 

  • Liu, J., Feng, X., Qiu, G., Anderson, C. W., & Yao, H. (2012). Prediction of methyl mercury uptake by rice plants (Oryza sativa L.) using the diffusive gradient in thin films technique. Environmental Science and Technology, 46, 11013–11020.

    Article  CAS  Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. Academic Press.

    Google Scholar 

  • Miretzky, P., Cristina, M., Wilson, B., & Jardim, W. F. (2005). Sorption of mercury (II) in Amazon soils from column studies. Chemosphere, 60, 1583–1589.

    Article  CAS  Google Scholar 

  • Neculita, C.-M., Zagury, G. J., & Descheˆnes, L. (2005). Mercury speciation in highly contaminated soils from chlor-alkali plants using chemical extractions. Journal of Environmental Quality, 34, 255–262.

    CAS  Google Scholar 

  • O’Connor, D., Hou, D., Ok, Y. S., Mulder, J., Duan, L., Wu, Q., Wang, S., Tack, F. M. G., & Rinklebe, J. (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126, 747–761.

    Article  CAS  Google Scholar 

  • Peng, X., Liu, F., Wang, W. X., & Ye, Z. (2012). Reducing total mercury and methylmercury accumulation in rice grains through water management and deliberate selection of rice cultivars. Environmental Pollution, 162, 202–208.

    Article  CAS  Google Scholar 

  • Puschenreiter, M., Wieczorek, S., Horak, O., & Wenzel, W. W. (2003). Chemical changes in the rhizosphere of metal hyperaccumulator and excluder Thlaspi species. Journal of Plant Nutrition and Soil Science, 166, 579–584.

    Article  CAS  Google Scholar 

  • Rehman, A., Farooq, M., Naveed, M., Ozturk, L., & Nawaz, A. (2018). Pseudomonas-aided zinc application improves the productivity and biofortification of bread wheat. Crop and Pasture Science, 69, 659–672.

    Article  CAS  Google Scholar 

  • Reis, A. T., Lopes, C. B., Davidson, C. M., Duarte, A. C., & Pereira, E. (2015). Extraction of available and labile fractions of mercury from contaminated soils: The role of operational parameters. Geoderma, 259–260, 213–223.

    Article  Google Scholar 

  • Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Multiscale analysis of heavy metal contents in Spanish agricultural topsoils. Chemosphere, 70, 1085–1096.

    Article  CAS  Google Scholar 

  • Rybak, K., Samborska, K., Jedlinska, A., Parniakov, O., Nowacka, M., Witrowa-Rajchert, D., & Wiktor, A. (2020). The impact of pulsed electric field pretreatment of bell pepper on the selected properties of spray dried juice. Innovative Food Science & Emerging Technologies, 65, 102446.

    Article  CAS  Google Scholar 

  • Sánchez, D. M., Quejido, A. J., Fernández, M., Hernández, C., Schmid, T., Millán, R., González, M., Aldea, M., Martín, R., & Morante, R. (2005). Mercury and trace element fractionation in Almaden soils by application of different sequential extraction procedures. Analytical and Bioanalytical Chemistry, 381, 1507–1513.

    Article  Google Scholar 

  • Sarwar, N., Malhi, S. S., Zia, M. H., Naeem, A., Bibi, S., & Farid, G. (2010). Role of mineral nutrition in minimizing cadmium accumulation by plants. Journal of the Science of Food and Agriculture, 90, 925–937.

    Article  CAS  Google Scholar 

  • Shi, Y., Xie, H., Cao, L., Zhang, R., Xu, Z., Wang, Z., & Deng, Z. (2017). Effects of Cd-and Pb-resistant endophytic fungi on growth and phytoextraction of Brassica napus in metal-contaminated soils. Environmental Science and Pollution Research, 24, 417–426.

    Article  CAS  Google Scholar 

  • Sierra, M. J., Rodríguez-Alonso, J., & Millán, R. (2012). Impact of the lavender rhizosphere on the mercury uptake in field conditions. Chemosphere, 89, 1457–1466.

    Article  CAS  Google Scholar 

  • Sodango, T. H., Li, X., Sha, J., & Bao, Z. (2018). Review of the spatial distribution, source and extent of heavy metal pollution of soil in China: Impacts and mitigation approaches. Journal of Health and Pollution, 8(17), 53–70.

    Article  Google Scholar 

  • Takahashi, G. (2016). Damage and heavy metal pollution in China’s farmland: Reality and solutions. Journal of Contemporary East Asia Studies, 5, 11–25.

    Article  Google Scholar 

  • Tangahu, B. V., Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, 1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  • Thakali, S., Allen, H. E., Di Toro, D. M., Ponizovsky, A. A., Rooney, C. P., Zhao, F. J., et al. (2006). Terrestrial biotic ligand model 2. Application to Ni and Cu toxicities to plants, invertebrates, and microbes in soil. Environmental Science & Technology, 40(22), 7094–7100. https://doi.org/10.1021/es061173c

  • Vives-Peris, V., de Ollas, C., Gómez-Cadenas, A., & Pérez-Clemente, R. M. (2020). Root exudates: From plant to rhizosphere and beyond. Plant Cell Reports, 39(1), 3–17.

    Article  CAS  Google Scholar 

  • Wang, C., Yang, Z., Chen, L., Yuan, X., Liao, Q., & Ji, J. (2012). The transfer of fluorine in the soil–wheat system and the principal source of fluorine in wheat under actual field conditions. Field Crops Research, 137, 163–169.

    Article  Google Scholar 

  • Wang, J., Feng, X., Anderson, C. W., Wang, H., & Wang, L. (2014). Thiosulphate-induced mercury accumulation by plants: Metal uptake and transformation of mercury fractionation in soil-results from a field study. Plant and Soil, 375, 21–33.

    Article  CAS  Google Scholar 

  • Wang, J., Xing, Y., Xie, Y., Meng, Y., Xia, J., & Feng, X. (2019). The use of calcium carbonate-enriched clay minerals and diammonium phosphate as novel immobilization agents for mercury remediation: Spectral investigations and field applications. Science of the Total Environment, 646, 1615–1623.

    Article  CAS  Google Scholar 

  • Wang, Y., & Greger, M. (2004). Clonal differences in mercury tolerance, accumulation, and distribution in willow. Journal of Environmental Quality, 33, 1779–1785.

    Article  CAS  Google Scholar 

  • Wang, Y., Stauffer, C., Keller, C., & Greger, M. (2005). Changes in Hg fractionation in soil induced by willow. Plant and Soil, 275, 67–75.

    Article  CAS  Google Scholar 

  • Waweru, B. W., Kilalo, D. C., Miano, D. W., Kimenju, J. W., & Rukundo, P. (2019). Diversity and economic importance of viral diseases of pepper (Capsicum spp.) in Eastern Africa. Journal of Applied Horticulture, 21(1), 70.

    Article  Google Scholar 

  • Xing, Y., Wang, J., Shaheen, S. M., Feng, X., Chen, Z., Zhang, H., & Rinklebe, J. (2020). Mitigation of mercury accumulation in rice using rice hull-derived biochar as soil amendment: A field investigation. Journal of Hazardous Materials, 388, 121747.

    Article  CAS  Google Scholar 

  • Xu, J., Bravo, A. G., Lagerkvist, A., Bertilsson, S., Sjöblom, R., & Kumpiene, J. (2015). Sources and remediation techniques for mercury contaminated soil. Environment International, 74, 42.

    Article  CAS  Google Scholar 

  • Yin, Y., Allen, H. E., Li, Y., Huang, C. P., & Sanders, P. F. (1996). Adsorption of mercury (II) by soil: Effects of pH, chloride, and organic matter. Journal of Environmental Quality, 25, 837–844.

    Article  CAS  Google Scholar 

  • Youssef, R. A., & Chino, M. (1989). Root-induced changes in the rhizosphere of plants: I—pH changes in relation to the bulk soil. Soil Science and Plant Nutrition, 35, 461–468.

    Article  Google Scholar 

Download references

Funding

This research was funded by the National Key Research and Development Program of China (2016YFD0800401) and the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences (2016–2022).

Author information

Authors and Affiliations

Authors

Contributions

YJ designed the study; SH performed the experiments and drafted the manuscript with the input of YJ, PZ, SU, JH, and ZK; ZL, XX, AA, and TY gave technical support and statistical analysis. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yang Jianjun.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

Not applicable since the manuscript has not been involved the use of any animal or human data or tissue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 230 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Jianjun, Y., Hussain, J. et al. The rhizospheric transformation and bioavailability of mercury in pepper plants are influenced by selected Chinese soil types. Environ Geochem Health 45, 41–52 (2023). https://doi.org/10.1007/s10653-022-01209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01209-9

Keywords

Navigation