Skip to main content

Advertisement

Log in

Thiosulphate-induced mercury accumulation by plants: metal uptake and transformation of mercury fractionation in soil - results from a field study

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The thiosulphate induced accumulation of mercury by the three plants Brassica juncea var.LDZY, Brassica juncea var.ASKYC and Brassica napus var. ZYYC and the transformation of mercury fractionation in the rhizosphere of each plant was investigated in the field.

Methods

Experimental farmland was divided into control and thiosulphate plots. Each plot was divided into three subplots with each planted with one of the plants. After harvesting, the mercury concentration in plants, mercury fractionation in rhizosphere soil before and after phytoextraction, and the vertical distribution of bioavailable mercury in bulk soil profiles was analyzed.

Results

The cultivar B. juncea var.LDZY accumulated a higher amount of mercury in shoots than the other two plants. Thiosulphate treatment promoted an increase in the concentration of metal in plants and a transformation of Fe/Mn oxide-bound and organic-bound mercury (potential bioavailable fractions) into soluble and exchangeable and specifically-sorbed fractions in the rhizosphere. The observed increase in bioavailable rhizosphere mercury concentration was restricted to the root zone; mercury did not move down the soil profile as a function of thiosulphate application to soil.

Conclusions

Thiosulphate-induced phytoextraction has the potential to manage environmental risk of mercury in soil by decreasing the concentration of mercury associated with potential bioavailable fraction that can be accumulated by crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Blaylock MJ, David E, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bishop KH, Lee YH, Munthe J, Dambrine E (1998) Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry 40:101–113

    Article  Google Scholar 

  • Chen J, Yang ZM (2012) Mercury toxicity, molecular response and tolerance in higher plants. BioMetals 25:847–857

    Article  CAS  PubMed  Google Scholar 

  • CNEPA (Chinese National Environment Protect Agency) (1995) Environmental quality standard for soils, GB15618-1995, pp.1–6 (In Chinese)

  • Dessureault-Rompré J, Nowack B, Schulin R, Tercier-Waeber ML, Luster J (2008) Metal solubility and speciation in the rhizosphere of Lupinus albus cluster roots. Environ Sci Technol 42:7146–7151

    Article  PubMed  Google Scholar 

  • Fayiga AO, Ma LQ, Zhou QX (2007) Effects of plant arsenic uptake and heavy metals on arsenic distribution in an arsenic-contaminated soil. Environ Pollut 147:737–742

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Li P, Qiu G, Wang S, Li G, Shang L, Meng B, Jiang H, Bai W, Li Z (2008) Human exposure to methylmercury through rice intake in mercury mining areas, Guizhou Province, China. Environ Sci Technol 42:326–332

    Article  CAS  PubMed  Google Scholar 

  • Feng X, Sommar J, Lindqvist O, Hong Y (2002) Occurrence, emissions and deposition of mercury during coal combustion in the province Guizhou, China. Water Air Soil Pollut 139:311–324

    Article  CAS  Google Scholar 

  • Grispen VMJ, Nelissen HJM, Verkleij JAC (2006) Phytoextraction with Brassica napus L.: a tool for sustainable management of heavy metal contaminated soils. Environ Pollut 144:77–83

    Article  CAS  PubMed  Google Scholar 

  • Haag-Kerwer A, Schäfer HJ, Heiss S, Walter C, Rausch T (1999) Cadmium exposure in Brassica juncea causes a decline in transpiration rate and leaf expansion without effect on photosynthesis. J Exp Bot 50:1827–1835

    CAS  Google Scholar 

  • Hamon RE, McLaughlin MJ (1999) Fifth International Conference on the Biogeochemistry of Trace Elements (ICOBTE), Vienna. pp. 908–909

  • Han FX, Sridhar B, Monts DL, Su Y (2004) Phytoavailability and toxicity of trivalent and hexavalent chromium to Brassica juncea. New Phytol 162:489–499

    Article  CAS  Google Scholar 

  • Han FX, Su Y, Monts DL, Waggoner CA, Plodinec MJ (2006) Binding, distribution, and plant uptake of mercury in a soil from Oak Ridge, Tennessee, USA. Sci Total Environ 368:753–768

    Article  CAS  PubMed  Google Scholar 

  • Hassett DJ, Heebink LV, Pflughoeft-Hassett DF (2009) Potential for mercury vapor release from coal combustion by-products. Fuel Sci Technol 85:613–620

    Article  Google Scholar 

  • Hauser L, Tandy S, Schulin R, Nowack B (2005) Column extraction of heavy metals from soils using the biodegradable chelating agent EDDS. Environ. Sci Technol 39:6819–6824

    Article  CAS  Google Scholar 

  • Higueras P, Oyarzun R, Biester H, Lillo J, Lorenzo S (2003) A first insight into mercury distribution and speciation in soils from the Almadén mining district, Spain. J Geochem Explor 80:95–104

    Article  CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Israr M, Sahi SV (2006) Antioxidative responses to mercury in the cell cultures of Sesbania Drummondii. Plant Physiol Biochem 44:590–595

    Article  CAS  PubMed  Google Scholar 

  • Issaro N, Abi-Ghanem C, Bermond A (2009) Fractionation studies of mercury in soils and sediments: a review of the chemical reagents used for mercury extraction. Anal Chim Acta 631:1–12

    Article  CAS  PubMed  Google Scholar 

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182

    Article  PubMed  Google Scholar 

  • Jing YD, He ZL, Yang XE, Sun CY (2008) Evaluation of soil tests for plant-available mercury in a soil-crop rotation system. Commun Soil Sci Plan 39:3032–3046

    Article  CAS  Google Scholar 

  • Jones DL (1998) Organic acids in the rhizosphere–a critical review. Plant soil 205:25–44

    Article  CAS  Google Scholar 

  • Jones DL, Darah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant soil 180:57–66

    Article  CAS  Google Scholar 

  • Lomonte C, Doronila AI, Gregory D, Baker AJM, Kolev SD (2010) Phytotoxicity of biosolids and screening of selected plant species with potential for mercury phytoextraction. J Hazard Mater 173:494–501

    Article  CAS  PubMed  Google Scholar 

  • Lu R (2000) Chemical analysis method of agricultural soil. China Agricultural Science Press, Beijing (In Chinese)

    Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moreno F, Anderson C, Stewart R, Robinson B, Nomura, Ghomshei M, Meech JA (2005a) Effect of thioligands on Plant-Hg accumulation and volatilisation from mercury-contaminated mine tailings. Plant Soil 275:233–246

    Article  CAS  Google Scholar 

  • Moreno FN, Anderson CWN, Stewart RB, Robinson BH (2005b) Mercury volatilisation and phytoextraction from base-metal mine tailings. Environ Pollut 136:341–352

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Jiméneza E, Gamarrab R, Carpena-Ruiza RO, Millánc R, Peñalosaa JM, Esteban E (2006) Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 63:1969–1973

    Article  Google Scholar 

  • Mukherjee AB, Zevenhoven R, Brodersen J, Hylander LD, Bhattacharya P (2004) Mercury in waste in the European Union: sources, disposal methods and risks. Resour Conserv Recycl 42:155–182

    Article  Google Scholar 

  • Patra M, Bhowmik N, Bandopadhyay B, Sharma A (2004) Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ Exp Bot 52:199–223

    Article  CAS  Google Scholar 

  • Patra M, Sharma A (2000) Mercury toxicity in plants. Bot Rev 66:379–422

    Article  Google Scholar 

  • Pedron F, Petruzzell G, Barbafier M, Tassi E (2013) Remediation of a mercury-contaminated industrial soil using bioavailable contaminant stripping. Pedosphere 23:104–110

    Article  Google Scholar 

  • Qiu G, Feng X, Wang S, Fu X, Shang L (2009) Mercury distribution and speciation in water and fish from abandoned Hg mines in Wanshan, Guizhou province, China. Sci Total Environ 407:5162–5168

    Article  CAS  PubMed  Google Scholar 

  • Qiu G, Feng X, Wang S, Shang L (2005) Mercury and methylmercury in riparian soil, sediments, mine-waste calcines, and moss from abandoned Hg mines in east Guizhou province, southwestern China. Appl Geochem 20:627–638

    Article  CAS  Google Scholar 

  • Ravichandran M (2004) Interactions between mercury and dissolved organic matter––a review. Chemosphere 55:319–331

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran M, Aiken GR, Reddy MM, Ryan JN (1998) Enhanced dissolution of cinnabar (mercuric sulfide) by dissolved organic matter isolated from the Florida Everglades. Environ Sci Technol 32:3305–3311

    Article  CAS  Google Scholar 

  • Rio M, Font R, Fernandez-Martinez J, Domínguez J, Haro A (2000) Field trials of Brassica carinata and Brassica juncea in polluted soils of the Guadiamar river area. Fresen Environ Bull 9:328–332

    Google Scholar 

  • Rodriguez L, López-Bellido F, Carnicer A, Alcalde-Morano V (2003) Phytoremediation of mercury-polluted soils using crop plants. Fresen Environ Bull 12:967–971

    CAS  Google Scholar 

  • Rodriguez L, Rincon J, Asencio I, Rodriguez-Castellanos L (2007) Capability of selected crop plants for shoot mercury accumulation from polluted soils: phytoremediation perspectives. Int J Phytoremediat 9:1–13

    Article  CAS  Google Scholar 

  • Sholupov S, Pogarevb S, Ryzhovb S, Mashyanovb V, Stroganova A (2004) Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process Technol 85:473–485

    Article  CAS  Google Scholar 

  • Smolińska B, Cedzyńska K (2007) EDTA and urease effects on Hg accumulation by Lepidium sativum. Chemosphere 69:1388–1395

    Article  PubMed  Google Scholar 

  • Ullah MB (2008) Mercury Stabilization using Thiosulphate and Thioselenate. Dissertation, University of British Columbia

  • Wang J, Feng X, Anderson CWN, Qiu GL, Ping L, Bao ZD (2011a) Ammonium thiosulphate enhanced phytoextraction from mercury contaminated soil-results from a greenhouse study. J Hazard Mater 186:119–127

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Feng X, Anderson CWN, Zhu W, Yin R, Wang H (2011b) Mercury distribution in the soil–plant–air system at the Wanshan mercury mining district in Guizhou, Southwest China. Environ Toxicol Chem 30:2725–2731

    Google Scholar 

  • Wang J, Feng X, Anderson CWN, Xing Y, Shang L (2012a) Remediation of mercury contaminated sites-a review. J Hazard Mater 221-222:1–18

    Google Scholar 

  • Wang J, Feng X, Anderson CWN, Wang H, Zheng L, Hu T (2012b) Implications of mercury speciation in thiosulphate treated plants. Environ Sci Technol 46:5361–5368

    Google Scholar 

  • Wang SF, Feng XB, Qiu GL, Fu XW, Wei ZQ (2007) Characteristics of mercury exchange flux between soil and air in the heavily air-polluted area, eastern Guizhou, China. Atmos Environ 41:5584–5594

    Article  CAS  Google Scholar 

  • Wang YD, Greger M (2006) Use of iodide to enhance the phytoextraction of mercury-contaminated soil. Sci Total Environ 368:30–39

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Wang S, Streets DG, Hao J, Chan M, Jiang J (2006) Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci Technol 40:5312–5318

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Fang J, Tang Y, Ji C, Zheng CY, He JS, Zhu B (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Global Change Biol 14:1592–1599

    Article  Google Scholar 

  • Yang Y, Ratte D, Smets B, Pignatello J, Grasso D (2001) Mobilization of soil organic matter by complexing agents and implications for polycyclic aromatic hydrocarbon desorption. Chemosphere 43:1013–1021

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Feng X, Larssen T, Qiu G, Vogt R (2010) In inland China, rice, rather than fish is the major pathway for methylmercury exposure. Environ Health Perspect 118:1183–1188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This research was financed by the Natural Science Foundation of China (41030752, 41021062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinbin Feng.

Additional information

Responsible Editor: Henk Schat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., Feng, X., Anderson, C.W.N. et al. Thiosulphate-induced mercury accumulation by plants: metal uptake and transformation of mercury fractionation in soil - results from a field study. Plant Soil 375, 21–33 (2014). https://doi.org/10.1007/s11104-013-1940-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-013-1940-5

Keywords

Navigation