Skip to main content

Advertisement

Log in

Use of combined tools for effectiveness evaluation of tailings rehabilitated with designed Technosol

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil and water characteristics and biogeochemical processes can be improved by the application of an integrated technology based on circular economy: designed Technosol. The evaluation of the effectiveness of the superficial application of a designed Technosol, with andic and eutrophic properties, on the rehabilitation of sulfide tailings of a uranium mine (Fé mining area, Spain) was the aim of this study. After 20 months of the Technosol application, the tailing rehabilitation status (Rehabilitated tailing) was compared to a non-rehabilitated tailing (Tailing). To assess the rehabilitation of these systems, several properties were analyzed: chemical characteristics of the materials and their leachates, soil enzymatic activities (dehydrogenase, β-glucosidase, acid phosphatase and urease), basal respiration and several plant endpoints from direct and indirect bioassays and pot experiment using Lolium perennse L. and Trifolium pratense L.. Potentially toxic concentrations of Co, Mn and Ni were identified in both available fraction and leachates, pointing out the serious environmental risk posed by the tailing. The improvement of overall physicochemical properties in the rehabilitated tailing materials (e.g., decrease of the hazardous element concentrations in leachates and available fraction, and improvement of the fertility and structure) allowed a quick plant cover with pasture species and provided a suitable habitat for active microbial community (evaluated by increasing dehydrogenase activity and basal respiration). This improvement in the rehabilitated tailing contributed to a significant decrease in the ecotoxicological risk and the spread of hazardous elements. The field application of this specific Technosol was a promising and lasting solution for rehabilitation of this type of tailings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu, M. M., Batista, M. J., Magalhães, M. C. F., & Matos, J. X. (2010). Acid mine drainage in the Portuguese Iberian Pyrite Belt. In C. R. Brock (Ed.), Mine drainage and related problems (pp. 71–118). Nova Science Publishers Inc.

    Google Scholar 

  • Abreu, M. M., Lopes, J., Santos, E. S., & Magalhães, M. C. F. (2014). Ecotoxicity evaluation of an amended soil contaminated with uranium and radium using sensitive plants. Journal of Geochemical Exploration, 142, 112–121. https://doi.org/10.1016/j.gexplo.2014.01.029

    Article  CAS  Google Scholar 

  • Arán, D., Antelo, J., Macías, F., 2016. Uso de Tecnosuelos para la mejora en la calidad química de aguas de escorrentía de la mina Fé (Cuidad Rodrigo, Salamanca), in: Sociedade Portuguesa de Ciência do Solo (Ed.), Livro de Actas do VII Congresso Ibérico das Ciências do Solo/VI Congresso Nacional de Rega e Drenagem, pp. 337–340.

  • Asensio, V., Covelo, E. F., & Kandeler, E. (2013a). Soil management of copper mine tailing soils — Sludge amendment and tree vegetation could improve biological soil quality. Science of the Total Environment, 456–457, 82–90. https://doi.org/10.1016/j.scitotenv.2013.03.061

    Article  CAS  Google Scholar 

  • Asensio, V., Vega, F. A., Andrade, M. L., & Covelo, E. F. (2013b). Technosols made of wastes to improve physico-chemical characteristics of a copper mine soil. Pedosphere, 23, 1–9. https://doi.org/10.1016/S1002-0160(12)60074-5

    Article  CAS  Google Scholar 

  • Bagur-González, M. G., Estepa-Molina, C., Martín-Peinado, F., & Morales-Ruano, S. (2011). Toxicity assessment using Lactuca sativa L. bioassay of the metal(loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site. J. Soil. Sediment., 11, 281–289. https://doi.org/10.1007/s11368-010-0285-4

    Article  CAS  Google Scholar 

  • Barrón, V., & Torrent, J. (2013). Iron, manganese and aluminium oxides and oxyhydroxides. EMU Notes in Mineral., 14, 297–336. https://doi.org/10.1180/EMU-notes.14.9

    Article  Google Scholar 

  • BOE. (2003). Real Decreto 140/2003, de 7 de febrero, por el que se establecen los criterios sanitarios de la calidad del agua de consumo humano. Boletín Oficial Del Estado, 45, 7228–7245.

    Google Scholar 

  • BOE, 2015. Real Decreto 817/2015, de 11 de septiembre, por el que se establecen los criterios de seguimiento y evaluación del estado de las aguas superficiales y las normas de calidad ambiental. Boletín Oficial del Estado 219, 80582–80677.

  • Both, R. A., Arribas, A., & de Saint-Andre, B. (1994). The origin of breccia-hosted uranium deposits in carbonaceous metasediments of the Iberian Peninsula; U-Pb geochronology and stable isotope studies of the Fe Deposit, Salamanca Province Spain. Economic Geology Bulletin Society, 89, 584–601. https://doi.org/10.2113/gsecongeo.89.3.584

    Article  CAS  Google Scholar 

  • Chezom, D., Chimi, K., Choden, S., Wangmo, T., & Gupta, S. K. (2013). Comparative study of different leaching procedures. International Journal of Engineering Research, 1, 1–5.

    Google Scholar 

  • DIN 38414-S4, 1984. Schlamm und Sedimente, Bestimmung der Eluierbarkeit mit Wasser. DIN Deutsches Institut für Normung, Berlin.

  • Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology & Biochemistry, 9, 167–172. https://doi.org/10.1016/0038-0717(77)90070-0

    Article  CAS  Google Scholar 

  • Eivazi, F., & Tabatabai, M. A. (1988). Glucosidases and galactosidases in soils. Soil Biology & Biochemistry, 20, 601–606. https://doi.org/10.1016/0038-0717(88)90141-1

    Article  CAS  Google Scholar 

  • Feng, M., Shan, X., Zhang, S., & Wen, B. A. (2005). A comparison of rizosphere-based method with DTPA, EDTA, CaCl2 and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environmental Pollution, 137, 231–240. https://doi.org/10.1016/j.envpol.2005.02.003

    Article  CAS  Google Scholar 

  • Fiedler, S., Höll, B. S., & Jungkunst, H. F. (2005). Methane budget of a black forest spruce ecosystem considering soil pattern. Biogeochem., 76, 1–20. https://doi.org/10.1007/s10533-005-5551-y

    Article  CAS  Google Scholar 

  • ISO 11269–2. (1995). Soil quality: Determination of the effects of pollutants on soil flora. Part 2. Effects of chemicals on the emergence and growth of higher plants. International Organization for Standardization, Switzerland.

  • ISO 15799 (1999). Soil quality: Guidance on the ecotoxicological characterization of soils and soil materials. Annex A.1.2.2 Determination of the effects of pollutants on soil flora - part 2: effects of chemicals on the emergence and growth of higher plants. International Organisation for Standardisation, Switzerland.

  • ISO 17402 (2006). Soil Quality: Guidance for the selection and application of methods for the assessment of bioavailability in soil and soil materials. International Organisation for Standardisation, Switzerland.

  • IUSS Working Group WRB (2015). World reference base for soil resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

  • Johnson, D. B. & Hallberg, K. B. (2005). Acid mine drainage remediation options: a review. Science of The Total Environment, 338(1-2), 3–14. https://doi.org/10.1016/j.scitotenv.2004.09.002

    Article  CAS  Google Scholar 

  • Jones, D. L., Darrah, P. R., & Kochian, L. V. (1996). Critical-evaluation of organic-acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant and Soil, 180, 57–66. https://doi.org/10.1007/BF00015411

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2011). Trace Elements in Soils and Plants. CRC Press.

    Google Scholar 

  • Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and fertility of Soils, 6, 68–72. https://doi.org/10.1007/BF00257924

    Article  CAS  Google Scholar 

  • Kumar, S., Chaudhuri, S., & Maiti, S. K. (2013). Soil dehydrogenase enzyme activity in natural and mine soil: a review. Middle-East Journal of Scientific Research, 13, 898–906. https://doi.org/10.5829/idosi.mejsr.2013.13.7.2801

    Article  CAS  Google Scholar 

  • Kumpiene, J., Lagerkvist, A., & Maurice, C. (2008). Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments — a review. Waste Management, 28, 215–225. https://doi.org/10.1016/j.wasman.2006.12.012

    Article  CAS  Google Scholar 

  • Leitgib, L., Kálmán, J., & Gruiz, K. (2007). Comparison of bioassays by testing whole soil and their water extract from contaminated sites. Chemosphere, 66, 428–434. https://doi.org/10.1016/j.chemosphere.2006.06.024

    Article  CAS  Google Scholar 

  • Marchiol, L., Mondini, C., Leita, L., & Zerbi, G. (1999). Effects of Municipal waste leachate on seed germination in soil-compost mixtures. Restoration Ecology, 7, 155–161. https://doi.org/10.1046/j.1526-100X.1999.72007.x

    Article  Google Scholar 

  • Martí, E., Sierra, J., Sánchez, M., Cruañas, R., & Garau, M. A. (2007). Ecotoxicological tests assessment of soils polluted by chromium (VI) or pentachlorophenol. Science of the Total Environment, 378, 53–57. https://doi.org/10.1016/j.scitotenv.2007.01.012

    Article  CAS  Google Scholar 

  • Martinez-Salgado, M.M., Gutiérrez-Romero, V., Jannsens, M., Ortega-Blu, R., 2010. Biological soil quality indicators: a review, in: Mendez-Vilas, A. (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology, pp. 319–328.

  • Monterroso, C., Macías, F., Gil Bueno, A., & Val Caballero, C. (1998). Evaluation of the land reclamation project at the As Pontes Mine (NW Spain) in relation to the suitability of the soil for plant growth. Land Degradation & Development, 9, 441–451. https://doi.org/10.1002/(SICI)1099-145X(199809/10)9:5%3c441::AID-LDR299%3e3.0.CO;2-U

    Article  Google Scholar 

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • OECD 208 (2006). OECD guidelines for the testing of chemicals/Section 2: effects on biotic systems, test No. 208: terrestrial plant test: seedling emergence and seedling growth test. Organization for Economic Co-operation and Development, Paris.

  • Oertel, C., Matschullat, J., Zurba, K., Zimmermann, F., & Erasmi, S. (2016). Greenhouse gas emissions from soils: A review. Chemie Der Erde, 76, 327–352. https://doi.org/10.1016/j.chemer.2016.04.002

    Article  CAS  Google Scholar 

  • Peech, M., Alexander, L.T., Dean, L.A., Reed, J.F., 1947. Methods of soil analysis for soil fertility investigations. USDA 575. U.S.Gov. Print. Office, Washington.

  • Rivas-Pérez, I. M., Fernández-Sanjurjo, M. J., Núñez-Delgado, A., Monterroso, C., Macías, F., & Álvarez-Rodríguez, E. (2016). Evolution of chemical characteristics of Technosols in an afforested coal mine dump over a 20-year period. Land Degradation & Development, 27, 1640–1649. https://doi.org/10.1002/ldr.2472

    Article  Google Scholar 

  • Rodier, J., 1976. L'analyse de L'eau: Eaux Naturelles, Eaux Résiduaires, Eau de Marée. T. II. Bordas, France.

  • Romero-Freire, A., Sierra Aragón, M., Martínez Garzón, F. J., & Peinado, F. J. M. (2016). Is soil basal respiration a good indicator of soil pollution? Geoderma, 263, 132–139. https://doi.org/10.1016/j.geoderma.2015.09.006

    Article  CAS  Google Scholar 

  • Salvatore, M. D., Carafa, A. M., & Carratù, G. (2008). Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates. Chemosphere, 73, 1461–1464. https://doi.org/10.1016/j.chemosphere.2008.07.061

    Article  CAS  Google Scholar 

  • Sánchez-España, J., Pamo, E. L., Santofimia, E., Aduvire, O., Reyes, J., & Barettino, D. (2005). Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): Geochemistry, mineralogy and environmental implications. Applied Geochemistry, 20, 1320–1356. https://doi.org/10.1016/j.apgeochem.2005.01.011

    Article  CAS  Google Scholar 

  • Santos, E., & S., Abreu, M.M., de Varennes, A., Macías, F., Leitão, S., Cerejeira, M.J., . (2013). Evaluation of chemical parameters and ecotoxicity of a soil developed on gossan following application of polyacrylates and growth of Spergularia purpurea. Science of the Total Environment, 461–462, 360–370. https://doi.org/10.1016/j.scitotenv.2013.05.003

    Article  CAS  Google Scholar 

  • Santos, E. S., Magalhães, M. C. F., Abreu, M. M., & Macías, F. (2014). Effects of organic/inorganic amendments on trace elements dispersion by leachates from sulfide containing tailings of the São Domingos mine Portugal. Time Evaluation Geoderma, 226–227, 188–203. https://doi.org/10.1016/j.geoderma.2014.02.004

    Article  CAS  Google Scholar 

  • Santos, E. S., Abreu, M. M., Macías, F., & de Varennes, A. (2016). Chemical quality of leachates and enzimatic activities in Technosols with gossan and sulfide wastes from the São Domingos mine. Journal of Soils and Sediments, 16, 1366–1382. https://doi.org/10.1007/s11368-015-1068-8

    Article  CAS  Google Scholar 

  • Santos, E. S., Abreu, M. M., & Magalhães, M. C. F. (2017a). Hazard assessment of soils and spoils from the Portuguese Iberian Pyrite Belt mining areas and their potential reclamation. In J. Bech, C. Bini, & M. Pashkevich (Eds.), Assessement, restoration and reclamation of mining influenced soils (pp. 63–88). Elsevier.

    Chapter  Google Scholar 

  • Santos, E. S., Abreu, M. M., Macías, F., & Magalhães, M. C. F. (2017b). Potential environmental impact of Technosols composed of gossan and sulfide-rich wastes from São Domingos mine: Assay of simulated leaching. Journal of Soils and Sediments, 17, 1369–1383. https://doi.org/10.1007/s11368-016-1518-y

    Article  CAS  Google Scholar 

  • Santos, E.S., Arán, D., Abreu, M.M., & de Varennes, A. (2018). Engineered soils using amendments for in situ rehabilitation of mine lands. In: Prasad, M.N.V., Favas, P.J.C., & Maiti, S.K. (Eds.), Bio-geotechnologies for mine site rehabilitation. Elsevier, 131–146. https://doi.org/10.1016/B978-0-12-812986-9.00008-7

  • Smith, K. A., Ball, T., Conen, F., Dobbie, K. E., Massheder, J., & Rey, A. (2003). Exchange of greenhouse gases between soil and atmosphere: Interactions of soil physical factors and biological process. European Journal of Soil Science, 54, 779–791. https://doi.org/10.1046/j.1351-0754.2003.0567.x

    Article  Google Scholar 

  • Tabatabai, M.A. (1994). Soil enzymes. In Mickelson, S.H., & Bigham, J.M. (Eds.), Methods of soil analysis, part 2: microbiological and biochemical properties. Soil science society of America book series 5. Soil Science Society of America, USA, pp. 775–833.

  • van Gestel, C. A. M., van der Waarde, J. J., Derksen, J. G. M., van der Hoek, E. E., Veul, M. F. X. W., Bouwens, S., Rusch, B., Kronenburg, R., & Stokman, G. N. M. (2001). The use of acute and chronic bioassays to determine the ecological risk and bioremediation efficiency of oil-polluted soils. Environmental Toxicology and Chemistry, 20, 1438–1449. https://doi.org/10.1002/etc.5620200705

    Article  Google Scholar 

  • Wang, X., Liu, Y., Zeng, G., Chai, L., Xiao, X., Song, X., & Min, Z. (2008). Pedological characteristics of Mn mine tailings and metal accumulation by native plants. Chemosphere, 72, 1260–1266. https://doi.org/10.1016/j.chemosphere.2008.05.001

    Article  CAS  Google Scholar 

  • Wang, Z., Schenkeveld, W. D. C., Kraemer, S. M., & Giammar, D. E. (2015). Synergistic effect of reductive and ligand-promoted dissolution of goethite. Environmental Science and Technology, 49, 7236–7244. https://doi.org/10.1021/acs.est.5b01191

    Article  CAS  Google Scholar 

  • Wong, M. H. (2003). Ecological restoration of mine degraded soils with emphasis on metal contaminated soils. Chemosphere, 50, 775–780. https://doi.org/10.1016/S0045-6535(02)00232-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank: ENUSA for technical cooperation and for providing access to the study area and field samples; Carmen Pérez and David Romero for technical support; Fundação para a Ciência e a Tecnologia for financial support of Linking Landscape, Environment, Agriculture and Food Research Centre (UID/AGR/04129/2020); and Xunta de Galicia for financial support of Group of Excellence GI-1245, AMBIOSOL (GRC2014/003). The authors from the USC belong to the CRETUS Strategic Partnership (AGRUP2015/02), co-funded by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Arán.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arán, D., Santos, E.S., Abreu, M.M. et al. Use of combined tools for effectiveness evaluation of tailings rehabilitated with designed Technosol. Environ Geochem Health 44, 1857–1873 (2022). https://doi.org/10.1007/s10653-021-01118-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-021-01118-3

Keywords

Navigation