Skip to main content
Log in

An analytical model of an urban heat island circulation in calm conditions

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

We obtain an analytical model solution to an idealization of an urban heat island (UHI) circulation—the steady shallow convective flow of a viscous stably stratified fluid over a differentially heated lower boundary without system rotation (no Coriolis force) or background wind. The coupled linearized equations of motion and thermal energy are solved for flows in two-dimensional Cartesian (slab-symmetric) and axisymmetric geometries forced by laterally varying surface buoyancies considered as Gaussian and parabolic arch functions. The scaled problem is free of governing parameters, and the solutions are universal. In all cases the flow is dominated by an in-up-out circulation. The updraft is stronger in the axisymmetric case than in the slab-symmetric case, while the surrounding downdraft, and the inflow and outflow branches of the circulation are stronger in the slab-symmetric case. These differences are explained in terms of the response of the perturbation pressure to the thermal forcing in the different geometries. The scalings themselves provide insight into observations that daytime UHI circulations can be stronger than nighttime circulations despite the relative weakness of urban–rural temperature contrasts during the daytime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Also known as an urban breeze (e.g., [49]), urban breeze circulation (UBC; e.g., [66]), country breeze (e.g., [5]), country wind (e.g., [27]), or buoyancy and turbulence driven atmospheric circulation (BTDAC; e.g., [24]).

  2. Defined as flows in which the frictional terms in the equations of motion are larger than the Coriolis and acceleration terms.

  3. Of course, for \( \nu \) to be large during the day while Pr is small (less than 1), the daytime thermal diffusivity κ must be very large (i.e., exceed the value of \( \nu \)).

References

  1. Abramowitz M, Stegun IA (eds) (1972) Handbook of mathematical functions. US Department of Commerce, Washington

    Google Scholar 

  2. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26

    Article  Google Scholar 

  3. Baik J-J (1992) Response of a stably stratified atmosphere to low-level heating: an application to the heat island problem. J Appl Meteorol 31:291–303

    Article  Google Scholar 

  4. Baik J-J, Chun H-Y (1997) A dynamical model for urban heat islands. Bound-Layer Meteorol 83:463–477

    Article  Google Scholar 

  5. Barlag A-B, Kuttler W (1990/1991) The significance of country breezes for urban planning. Energy Build 15–16: 291–297

  6. Bornstein RD (1968) Observations of the urban heat island effect in New York City. J Appl Meteorol 7:575–582

    Article  Google Scholar 

  7. Bornstein RD, Johnson DS (1977) Urban-rural wind velocity differences. Atmos Environ 11:597–604

    Article  Google Scholar 

  8. Bornstein RD (1987) Mean diurnal circulation and thermodynamic evolution of urban boundary layers. In: Kramer ML (ed) Modeling the urban boundary layer. American Meteorological Society, Boston, pp 53–93

    Google Scholar 

  9. Bornstein R, Lin Q (2000) Urban heat islands and summertime convective thunderstorms in Atlanta: three case studies. Atmos Environ 34:507–516

    Article  Google Scholar 

  10. Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Article  Google Scholar 

  11. Cenedese A, Monti P (2003) Interaction between an inland urban heat island and a sea- breeze flow: a laboratory study. J Appl Meteorol 42:1569–1583

    Article  Google Scholar 

  12. Cui YY, de Foy B (2012) Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J Appl Meteorol Climatol 51:855–868

    Article  Google Scholar 

  13. Dandou A, Tombrou M, Schäfer K, Emeis S, Protonotariou AP, Bossioli E, Soulakellis N, Suppan P (2009) A comparison between modelled and measured mixing-layer height over Munich. Bound-Layer Meteorol 131:425–440

    Article  Google Scholar 

  14. Debnath L, Bhatta D (2015) Integral transforms and their applications, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  15. Delage Y, Taylor PA (1970) Numerical studies of heat island circulations. Bound-Layer Meteorol 1:201–226

    Article  Google Scholar 

  16. Dirks RA (1974) Urban atmosphere: warm dry envelope over St. Louis. J Geophys Res 79:3473–3475

    Article  Google Scholar 

  17. Duckworth FA, Sandberg JS (1954) The effect on cities upon horizontal and vertical temperature gradients. Bull Am Meteorol Soc 35:198–207

    Article  Google Scholar 

  18. Dwight HB (1961) Tables of integrals and other mathematical data. Macmillan, New York

    Google Scholar 

  19. Eliasson I, Holmer B (1990) Urban heat island circulation in Göteborg, Sweden. Theor Appl Climatol 42:187–196

    Article  Google Scholar 

  20. Eliasson I, Upmanis H (2000) Nocturnal airflow from urban parks—implications for city ventilation. Theor Appl Climatol 66:95–107

    Article  Google Scholar 

  21. Estoque MA, Bhumralkar CM (1969) Flow over a localized heat source. Mon Weather Rev 97:850–859

    Article  Google Scholar 

  22. Falasca S, Moroni M, Cenedese A (2013) Laboratory simulations of an urban heat island in a stratified atmospheric boundary layer. J Vis 16:39–45

    Article  Google Scholar 

  23. Fan Y, Li Y, Wang X, Catalano F (2016) A new convective velocity scale for studying diurnal urban heat island circulation. J Appl Meteorol Climatol 55:2151–2164

    Article  Google Scholar 

  24. Fan Y, Hunt JCR, Li Y (2017) Buoyancy and turbulence-driven atmospheric circulation over urban areas. J Environ Sci 59:63–71

    Article  Google Scholar 

  25. Fan Y, Li Y, Bejan A, Wang Y, Yang X (2017) Horizontal extent of the urban heat dome flow. Sci Rep 7:11681

    Article  Google Scholar 

  26. Fernando HJS, Lee SM, Anderson J, Princevac M, Pardyjak E, Grossman-Clarke S (2001) Urban fluid mechanics: air circulation and contaminant dispersion in cities. Environ Fluid Mech 1:107–164

    Article  Google Scholar 

  27. Findlay BF, Hirt MS (1969) An urban-induced meso-circulation. Atmos Environ 3:537–542

    Article  Google Scholar 

  28. Freitas ED, Rozoff CM, Cotton WR, Silva Dias PL (2007) Interactions of an urban heat island and sea-breeze circulations during winter over the metropolitan area of São Paulo, Brazil. Bound-Layer Meteorol 122:43–65

    Article  Google Scholar 

  29. Fujibe F, Asai T (1980) Some features of a surface wind system associated with the Tokyo heat island. J Meteorol Soc Japan 58:149–152

    Article  Google Scholar 

  30. Garstang M, Tyson PD, Emmitt GD (1975) The structure of heat islands. Rev Geophys Space Phys 13:139–165

    Article  Google Scholar 

  31. Gedzelman SD, Austin S, Cermak R, Stefano N, Partridge S, Quesenberry S, Robinson DA (2003) Mesoscale aspects of the Urban Heat Island around New York City. Theor Appl Climatol 75:29–42

    Google Scholar 

  32. Gibson MM, Launder BE (1978) Ground effects on pressure fluctuations in the atmospheric boundary layer. J Fluid Mech 86:491–511

    Article  Google Scholar 

  33. Han J-Y, Baik J-J (2008) A theoretical and numerical study of urban heat island-induced circulation and convection. J Atmos Sci 65:1859–1877

    Article  Google Scholar 

  34. Hidalgo J, Pigeon G, Masson V (2008) Urban-breeze circulation during the CAPITOUL experiment: observational data analysis approach. Meteorol Atmos Phys 102:223–241

    Article  Google Scholar 

  35. Hidalgo J, Masson V, Pigeon G (2008) Urban-breeze circulation during the CAPITOUL experiment: numerical simulations. Meteorol Atmos Phys 102:243–262

    Article  Google Scholar 

  36. Hidalgo J, Masson V, Gimeno L (2010) Scaling the daytime urban heat island and urban-breeze circulation. J Appl Meteorol Climatol 49:889–901

    Article  Google Scholar 

  37. Howell JF, Sun J (1999) Surface-layer fluxes in stable conditions. Bound-Layer Meteorol 90:495–520

    Article  Google Scholar 

  38. Hung T, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8:34–48

    Article  Google Scholar 

  39. Jauregui E (1988) Local wind and air pollution interaction in the Mexico basin. Atmósfera 1:131–140

    Google Scholar 

  40. Jeffreys H (1922) On the dynamics of wind. Q J R Meteorol Soc 48:29–47

    Article  Google Scholar 

  41. Kanda M (2007) Progress in urban meteorology: a review. J Meteorol Soc Japan 85:363–383

    Article  Google Scholar 

  42. Kim Y-H, Baik J-J (2002) Maximum urban heat island intensity in Seoul. J Appl Meteorol 41:651–659

    Article  Google Scholar 

  43. Kimura R (1975) Dynamics of steady convections over heat and cool islands. J Meteorol Soc Japan 53:440–457

    Article  Google Scholar 

  44. Kimura R (1976) Effects of general flows on a heat island convection. Part 1: linear theory for the uniform flow. J Meteorol Soc Japan 54:308–320

    Article  Google Scholar 

  45. Kimura R, Misawa N, Sakagami J, Kunii TL (1977) Effects of general flows on a heat island convection. Part 2: numerical and laboratory experiments for shear flow. J Meteorol Soc Japan 55:32–51

    Article  Google Scholar 

  46. Kitamura Y, Hori A, Yagi T (2013) Flux Richardson number and turbulent Prandtl number in a developing stable boundary layer. J Meteorol Soc Japan 91:655–666

    Article  Google Scholar 

  47. Kundu PK, Cohen IM (2002) Fluid mechanics, 2nd edn. Academic Press, San Diego

    Google Scholar 

  48. Kurbatskiy AF, Kurbatskaya LI (2011) Efficiency of eddy mixing in a stable stratified atmospheric boundary layer. J Appl Mech Tech Phys 52:883–888

    Article  Google Scholar 

  49. Lemonsu A, Masson V (2002) Simulation of a summer urban breeze over Paris. Bound- Layer Meteorol 104:463–490

    Article  Google Scholar 

  50. Lindén J, Holmer B (2011) Thermally induced wind patterns in the Sahelian city of Ougadougou, Burkina Faso. Theor Appl Climatol 105:229–241

    Article  Google Scholar 

  51. Lu J, Arya SP, Snyder WH, Lawson RE (1997) A laboratory study of the urban heat island in a calm and stably stratified environment. Part I: temperature field. J Appl Meteorol 36:1377–1391

    Article  Google Scholar 

  52. Lu J, Arya SP, Snyder WH, Lawson RE (1997) A laboratory study of the urban heat island in a calm and stably stratified environment. Part II: velocity field. J Appl Meteorol 36:1392–1402

    Article  Google Scholar 

  53. Mahrt L, Vickers D (2005) Extremely weak mixing in stable conditions. Bound-Layer Meteorol 119:19–39

    Article  Google Scholar 

  54. Malkus JS, Stern ME (1953) The flow of a stable atmosphere over a heated island. Part 1. J Meteorol 10:30–41

    Article  Google Scholar 

  55. Marques Filho EP, Cassol M, Karam HA, Rizza U (2013) The vertical structure of tropical urban heat island with LES. Am J Environ Eng 3:24–31

    Article  Google Scholar 

  56. Niino H, Mori A, Satomura T, Akiba S (2006) Flow regimes of nonlinear heat island circulation. J Atmos Sci 63:1538–1547

    Article  Google Scholar 

  57. Noto K (1996) Dependence of heat-island phenomena on stable stratification and heat quantity in a calm environment. Atmos Environ 30:475–485

    Article  Google Scholar 

  58. Oke TR (1981) Canyon geometry and the nocturnal urban heat island: comparison of scale model and field observations. J Climatol 1:237–254

    Article  Google Scholar 

  59. Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108:1–24

    Google Scholar 

  60. Oke TR (1995) The heat island of the urban boundary layer: characteristics, causes and effects. In: Cermak JE, Davenport AG, Plate EJ, Viegas DX (eds) Wind climate in cities. Kluwer, Dordrecht, pp 81–107

    Chapter  Google Scholar 

  61. Olfe DB, Lee RL (1971) Linearized calculations of urban heat island convection effects. J Atmos Sci 28:1374–1388

    Article  Google Scholar 

  62. Phelan PE, Kaloush K, Miner M, Golden J, Phelan B, Silva H, Taylor RA (2015) Urban heat island: mechanisms, implications, and possible remedies. Annu Rev Environ Resour 40:285–307

    Article  Google Scholar 

  63. Pooler F (1963) Airflow over a city in terrain of moderate relief. J Appl Meteor 2:446–456

    Article  Google Scholar 

  64. Poreh M (1996) Investigation of heat islands using small scale models. Atmos Environ 30:467–474

    Article  Google Scholar 

  65. Rambaldi S, Randall DA (1981) Quasi-Lagrangian models of nascent thermals. Mon Weather Rev 109:1939–1951

    Article  Google Scholar 

  66. Ryu Y-H, Baik J-J, Han J-Y (2013) Daytime urban breeze circulation and its interaction with convective cells. Q J R Meteorol Soc 139:401–413

    Article  Google Scholar 

  67. Shapiro A, Kanak KM (2002) Vortex formation in ellipsoidal thermal bubbles. J Atmos Sci 59:2253–2269

    Article  Google Scholar 

  68. Sharan M, Gopalakrishnan SG (1997) Comparative evaluation of eddy exchange coefficients for strong and weak wind stable boundary layer modeling. J Appl Meteorol 36:545–559

    Article  Google Scholar 

  69. Shreffler JH (1978) Detection of centripetal heat island circulations from tower data in St. Louis. Bound-Layer Meteorol 15:229–242

    Article  Google Scholar 

  70. Shreffler JH (1979) Heat island convergence in St. Louis during calm periods. J Appl Meteorol 18:1512–1520

    Article  Google Scholar 

  71. Smith RC (1955) Theory of air flow over a heated land mass. Q J R Meteorol Soc 81:382–395

    Article  Google Scholar 

  72. Soong S-T, Ogura Y (1973) A comparison between axisymmetric and slab-symmetric cumulus cloud models. J Atmos Sci 30:879–893

    Article  Google Scholar 

  73. Stommel H, Veronis G (1957) Steady convective motion in a horizontal layer of fluid heated uniformly from above and cooled non-uniformly from below. Tellus 9:401–407

    Article  Google Scholar 

  74. Tapper NJ (1990) Urban influences on boundary layer temperature and humidity: results from Christchurch, New Zealand. Atmos Environ 24B:19–27

    Article  Google Scholar 

  75. Thorsson S, Eliasson I (2003) An intra-urban thermal breeze in Göteborg, Sweden. Theor Appl Climatol 75:93–104

    Google Scholar 

  76. Tombrou M, Dandou A, Helmis C, Akylas E, Angelopoulos G, Flocas H, Assimakopoulos V, Soulakellis N (2007) Model evaluation of the atmospheric boundary layer and mixed layer evolution. Bound-Layer Meteorol 124:61–79

    Article  Google Scholar 

  77. Tyson PD, du Toit WJF, Fuggle RF (1972) Temperature structure above cities: review and preliminary findings from the Johannesburg Urban Heat Island Project. Atmos Environ 6:533–542

    Article  Google Scholar 

  78. Tzavali A, Paravantis JP, Mihalakakou G, Fotiadi A, Stigka E (2015) Urban heat island intensity: a literature review. Fresenius Environ Bull 24:4537–4554

    Google Scholar 

  79. Ueda H, Mitsumoto S, Komori S (1981) Buoyancy effects on the turbulent transport processes in the lower atmosphere. Q J R Meteorol Soc 107:561–578

    Article  Google Scholar 

  80. Vukovich FM (1971) Theoretical analysis of the effect of mean wind and stability on a heat island circulation characteristic of an urban complex. Mon Weather Rev 99:919–926

    Article  Google Scholar 

  81. Vukovich FM, King WJ, Dunn JW, Worth JJB (1979) Observations and simulations of the diurnal variation of the urban heat island circulation and associated variations of the ozone distribution: a case study. J Appl Meteorol 18:836–854

    Article  Google Scholar 

  82. Yamada T, Mellor G (1975) A simulation of the Wangara atmospheric boundary layer data. J Atmos Sci 32:2309–2329

    Article  Google Scholar 

  83. Yau MK (1979) Perturbation pressure and cumulus convection. J Atmos Sci 36:690–694

    Article  Google Scholar 

  84. Yoshikado H, Kondo H (1989) Inland penetration of the sea breeze over the suburban area of Tokyo. Bound-Layer Meteorol 48:389–407

    Article  Google Scholar 

  85. Zhou B, Rybski D, Kropp JP (2013) On the statistics of urban heat island intensity. Geophys Res Lett 40:5486–5491

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Shapiro.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapiro, A., Fedorovich, E. An analytical model of an urban heat island circulation in calm conditions. Environ Fluid Mech 19, 111–135 (2019). https://doi.org/10.1007/s10652-018-9621-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9621-9

Keywords

Navigation