Skip to main content
Log in

Turbulence characteristics within sparse and dense canopies

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

Boundary layer interactions with canopies control various environmental processes. In the case of dense and homogeneous canopies, the so-called mixing layer analogy is most generally used. When the canopy becomes sparser, a transition occurs between the mixing layer and the boundary layer perturbed by interactions between element wakes. This transition has still to be fully understood and characterized. The experimental work presented here deals with the effect of the canopy density on the flow turbulence and involves an artificial canopy placed in a fully developed turbulent boundary layer. One and two-component velocity measurements are performed, both within and above the canopy. The influence of the spacing between canopy elements is studied. Longitudinal velocity statistical moments and Reynolds stresses are calculated and compared to literature data. For spacings greater than the canopy height, evidences of this transition are found in the evolution of the skewness factor, shear length scale and mixing length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiro BD (1990) Comparison of turbulence statistics within three boreal forest canopies. Boundary-Layer Meteorol 51(1–2): 99–121. doi:10.1007/BF00120463

    Article  Google Scholar 

  2. Aubrun S, Leitl B (2004) Development of an improved physical modelling of a forest area in a wind tunnel. Atmos Environ 38(18): 2797–2801. doi:10.1016/j.atmosenv.2004.02.035

    Article  CAS  Google Scholar 

  3. Baldocchi DD, Hutchinson BA (1987) Turbulence in an almond orchard: vertical variations in turbulent statistics. Boundary-Layer Meteorol 40(1-2): 127–146. doi:10.1007/BF00140072

    Article  Google Scholar 

  4. Belcher SE, Jerram N, Hunt JCR (2003) Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488: 369–398. doi:10.1017/S0022112003005019

    Article  Google Scholar 

  5. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35: 469–496. doi:10.1146/annurev.fluid.35.101101.161147

    Article  Google Scholar 

  6. Brunet Y, Finnigan JJ, Raupach MR (1994) A wind tunnel study of air flow in waving wheat: single-point velocity statistics. Boundary-Layer Meteorol 70(1-2): 95–132. doi:10.1007/BF00712525

    Article  Google Scholar 

  7. Brunet Y, Irvine MR (2000) The control of coherent eddies in vegetation canopies: streamwise structure spacing, canopy shear scale and atmospheric stability. Boundary-Layer Meteorol 94(1): 139–163. doi:10.1023/A:1002406616227

    Article  Google Scholar 

  8. Cheng H, Castro IP (2002) Near-wall flow over urban-like roughness. Boundary-Layer Meteorol 104(2): 229–259. doi:10.1023/A:1016060103448

    Article  Google Scholar 

  9. Cionco RM (1972) A wind-profile index for canopy flow. Boundary-Layer Meteorol 3(2): 255–263. doi:10.1007/BF02033923

    Article  Google Scholar 

  10. Cionco RM (1978) Analysis of canopy index values for various canopy densities. Boundary-Layer Meteorol 15(1): 81–93. doi:10.1007/BF00165507

    Article  Google Scholar 

  11. Finnigan JJ (2000) Turbulence in plant canopies. Annu Rev Fluid Mech 32: 519–571. doi:10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  12. Ghisalberti M, Nepf H (2006) The structure of the shear layer in flows over rigid and flexible canopies. Environ Fluid Mech 6(3): 277–301. doi:10.1007/s10652-006-0002-4

    Article  Google Scholar 

  13. Green SR, Grace J, Hutchings NJ (1995) Observations of turbulent air flow in three stands of widely spaced Sitka spruce. Agric Meteorol 74(3-4): 205–225. doi:10.1016/0168-1923(94)02191-L

    Article  Google Scholar 

  14. Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of surface form. J Appl Meteorol 38(9): 1262–1292. doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2

    Article  Google Scholar 

  15. Irvine MR, Gardiner BA, Hill MK (1997) The evolution of turbulence across a forest edge. Boundary-Layer Meteorol 84(3): 467–496. doi:10.1023/A:1000453031036

    Article  Google Scholar 

  16. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  17. Macdonald RW (2000) Modelling the mean velocity profile in the urban canopy layer. Boundary-Layer Meteorol 97(1): 25–45. doi:10.1023/A:1002785830512

    Article  Google Scholar 

  18. Massman WJ (1987) A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteorol 40(1-2): 179–197. doi:10.1007/BF00140075

    Article  Google Scholar 

  19. Massman WJ (1997) An analytical one-dimensional model of momentum transfer by vegetation of arbitrary structure. Boundary-Layer Meteorol 83(3): 407–421. doi:10.1023/A:1000234813011

    Article  Google Scholar 

  20. Meroney RN (1968) Characteristics of wind and turbulence in and above model forests. J Appl Meteorol 7(5): 780–788. doi:10.1175/1520-0450(1968)007<0780:COWATI>2.0.CO;2

    Article  Google Scholar 

  21. Monismith SG (2007) Hydrodynamics of coral reefs. Annu Rev Fluid Mech 39: 37–55. doi:10.1146/annurev.fluid.38.050304.092125

    Article  Google Scholar 

  22. Nepf H (1999) Drag, turbulence and diffusion in flow through emergent vegetation. Water Resour Res 35(2): 479–489. doi:10.1029/1998WR900069

    Article  Google Scholar 

  23. Nepf H, Ghisalberti M, White B, Murphy E (2007) Retention time and dispersion associated with submerged aquatic canopies. Water Resour Res 43((4): W0422. doi:10.1029/2006WR005362

    Google Scholar 

  24. Novak MD, Warland JS, Orchansky AL, Ketler R, Green S (2000) Wind tunnel and field measurements of turbulent flow in forests. Part I : uniformly thinned stands. Boundary-Layer Meteorol 95(3): 457–495. doi:10.1023/A:1002693625637

    Article  Google Scholar 

  25. Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part I: review of present knowledge. Atmos Environ 42(16): 3625–3653. doi:10.1016/j.atmosenv.2007.09.043

    Article  CAS  Google Scholar 

  26. Petroff A, Mailliat A, Amielh M, Anselmet F (2008) Aerosol dry deposition on vegetative canopies. Part II: a new modelling approach and applications. Atmos Environ 42(16): 3654–3683. doi:10.1016/j.atmosenv.2007.12.060

    Article  CAS  Google Scholar 

  27. Pietri L, Amielh M, Anselmet F (2006) Effect of the vegetation density on the turbulence properties in a canopy flow. In 13th international symposium on applications of laser techniques to fluid mechanics, 26–29 June, Lisbon, Portugal. http://ltces.dem.ist.utl.pt/lxlaser/lxlaser2006/program.asp

  28. Poggi D, Porporato A, Ridolfi L, Albertson JD, Katul GG (2004) The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol 111(3): 565–587. doi:10.1023/B:BOUN.0000016576.05621.73

    Article  Google Scholar 

  29. Pope SB (2000) Turbulent flows. Cambridge University Press,

  30. Py C, de Langre E, Moulia B (2006) A frequency lock-in mechanism in the interaction between wind and crop canopies. J Fluid Mech 568: 425–449. doi:10.1017/S0022112006002667

    Article  Google Scholar 

  31. Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1): 1–25

    Article  Google Scholar 

  32. Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy. Part I: the turbulence structure. Boundary-Layer Meteorol 35(1-2): 21–52. doi:10.1007/BF00117300

    Article  Google Scholar 

  33. Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies in vegetation canopies: the mixing layer analogy. Boundary-Layer Meteorol 78(3-4): 351–382. doi:10.1007/BF00120941

    Article  Google Scholar 

  34. Raupach MR, Hughes DE, Cleugh HA (2006) Momentum absorption in rough-wall boundary layers with sparse roughness elements in random and clustered distributions. Boundary-Layer Meteorol 120(2): 201–218. doi:10.1007/s10546-006-9058-4

    Article  Google Scholar 

  35. Righetti M, Armanini A (2002) Flow resistance in open channel flows with sparsely distributed bushes. J Hydrol (Amst) 269(1–2): 55–64. doi:10.1016/S0022-1694(02)00194-4

    Article  Google Scholar 

  36. Ruijgrok W, Tieben H, Eisinga P (1997) The dry deposition of particles to a forest canopy: a comparison of model and experimental results. Atmos Environ 31(3): 399–415. doi:10.1016/S1352-2310(96)00089-1

    Article  Google Scholar 

  37. Scurlock JMO, Asner GP, Gower ST (2001) Worlwide historical estimates of leaf area index, 1932–2000. Report ORNL/TM-2001/268, Oak Ridge National Laboratory, U.S.A.

  38. Shaw RH, Irvine I (1987) Calculation of velocity skewness in real and artificial canopies. Boundary-Layer Meteorol 39(4): 315–332. doi:10.1007/BF00125141

    Article  Google Scholar 

  39. Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Clim Appl Meteorol 22: 1922–1931. doi:10.1175/1520-0450(1983)022<1922:SOTRSI>2.0.CO;2

    Article  Google Scholar 

  40. Slinn WGN (1982) Prediction for particle deposition to vegetative canopies. Atmos Environ 16: 1785–1794. doi:10.1016/0004-6981(82)90271-2

    Article  Google Scholar 

  41. Wieringa J (1993) Representative roughness parameters for homogeneous terrain. Boundary-Layer Meteorol 63(4): 323–363. doi:10.1007/BF00705357

    Article  Google Scholar 

  42. Zhu W, van Hout R, Luznik L, Kang HS, Katz J, Meneveau C (2006) A comparison of PIV measurements of canopy turbulence performed in the field and in a wind tunnel model. Exp Fluids 41(2): 309–318. doi:10.1007/s00348-006-0145-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Pietri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pietri, L., Petroff, A., Amielh, M. et al. Turbulence characteristics within sparse and dense canopies. Environ Fluid Mech 9, 297–320 (2009). https://doi.org/10.1007/s10652-009-9131-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-009-9131-x

Keywords

Navigation