Skip to main content
Log in

The role of abduction in proving processes

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

This paper offers a typology of forms and uses of abduction that can be exploited to better analyze abduction in proving processes. Based on the work of Peirce and Eco, we describe different kinds of abductions that occur in students’ mathematical activity and extend Toulmin’s model of an argument as a methodological tool to describe students’ reasoning and to classify the different kinds of abduction. We then use this tool to analyze case studies of students’ abductions and to identify cognitive difficulties students encounter. We conclude that some types of abduction may present obstacles, both in the argumentation when the abduction occurs and later when the proof is constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Peirce’s Collected Works are organized into volumes within which each paragraph is numbered. In references to them, we indicate the volume by the digit before the dot and the paragraph by the number following the dot.

  2. We abbreviate “Backing” as “S” (for Support) rather than B to avoid confusion with the conclusion of the rule A → B

References

  • Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998a). A model for analysing the transition to formal proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 24–31). Stellenbosch, South Africa.

  • Arzarello, F., Micheletti, C., Olivero, F., & Robutti, O. (1998b). Dragging in Cabri and modalities of transition from conjectures to proofs in geometry. In A. Olivier & K. Newstead (Eds.), Proceedings of the Twentieth-second Annual Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 32–39). Stellenbosch, South Africa.

  • Boero, P., Garuti, R., Mariotti M. A. (1996). Some dynamic mental processes underlying producing and proving conjectures. In L. Puig & A. Gutierrez (Eds.), Proceedings of the Twentieth Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 121–128). Valencia, Spain.

  • Bonfantini, M., & Proni, G. (1983). To guess or not to guess. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 119–134). Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Cifarelli, V., & Sáenz-Ludlow, A. (1996). Abductive processes and mathematics learning. In E. Jakubowski, D. Watkins, & H. Biske (Eds.), Proceedings of the eighteenth annual meeting of the North American chapter of the international group for the psychology of mathematics education Vol. I (pp. 161–166). Columbus, OH: ERIC Clearinghouse for Science, Mathematics, and Environmental Education.

    Google Scholar 

  • Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.), The sign of three: Dupin, Holmes, Peirce (pp. 198–220). Bloomington, IN: Indiana University Press.

    Google Scholar 

  • Fann, K. T. (1970). Peirce’s theory of abduction. The Hague: Martinus Nijhoff.

    Google Scholar 

  • Ferrando, E. (2006). The abductive system. In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.), Proceedings of the thirtieth conference of the international group for the psychology of mathematics education Vol. 3 (pp. 57–64). Czech Republic: Prague.

    Google Scholar 

  • Inglis, M., Mejia-Ramos, J. P., & Simpson, A. (2007). Modelling mathematical argumentation: The importance of qualification. Educational Studies in Mathematics, 66, 3–21.

    Article  Google Scholar 

  • Knipping, C. (2003a). Argumentation structures in classroom proving situations. In M.A. Mariotti (Ed.), Proceedings of the Third Conference of the European Society in Mathematics Education (unpaginated). Bellaria, Italy. Retrieved from http://ermeweb.free.fr/CERME3/Groups/TG4/TG4_Knipping_cerme3.pdf

  • Knipping, C. (2003b). Beweisprozesse in der Unterrichtspraxis: Vergleichende analysen von mathematikunterricht in Deutschland und Frankreich [Proving processes in teaching practices – Comparative analysis of mathematics teaching in France and Germany]. Hildesheim: Franzbecker.

    Google Scholar 

  • Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom: Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–82.

    Article  Google Scholar 

  • Magnani, L. (2001). Abduction, reason and science: Processes of discovery and explanation. Dordrecht: Kluwer.

    Book  Google Scholar 

  • Mason, J. (1996). Abduction at the heart of mathematical being. In E. Gray (Ed.), Thinking about mathematics & music of the spheres: Papers presented for the inaugural lecture of Professor David Tall (pp. 34–40). Coventry: Mathematics Education Research Centre.

    Google Scholar 

  • Pedemonte, B. (2005). Quelques outils pour l’analyse cognitive du rapport entre argumentation et démonstration [Some tools to analyse the cognitive aspects of the relationship between argumentation and proof]. Recherche en Didactique des Mathématiques, 25(3), 313–348.

    Google Scholar 

  • Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66, 23–41.

    Article  Google Scholar 

  • Pedemonte, B. (2008). Argumentation and algebraic proof. ZDM – The International Journal on Mathematics Education, 40(3), 385–400.

    Article  Google Scholar 

  • Peirce, C. S. (1867). On the natural classification of arguments. Presented 9 April 1867 to the American academy of arts and sciences. Proceedings of the American Academy of Arts and Sciences, 7, 261–287. Compiled in Peirce, C. S., 1960, 2.461–516.

    Article  Google Scholar 

  • Peirce, C. S. (1878). Deduction, induction, and hypothesis. Popular science monthly, 13(August), 470–82. (Compiled in Peirce, C. S., 1960, 2.619–644).

    Google Scholar 

  • Peirce, C. S. (1960). Collected papers. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Reid, D. (2003). Forms and uses of abduction. In M. A. Mariotti (Ed.), Proceedings of the third conference of the European society in mathematics education (unpaginated). Italy: Bellaria. Retrieved from http://ermeweb.free.fr/CERME3/Groups/TG4/TG4_Reid_cerme3.pdf.

    Google Scholar 

  • Tall, D. (1995). Cognitive development, representations and proof (Proceedings of justifying and proving in school mathematics, pp. 27–38). London: Institute of Education.

    Google Scholar 

  • Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.

    Google Scholar 

  • Toulmin, S. E. (1993). Les usages de l’argumentation ([The uses of argument] (P. De Brabanter, Trans.)). Paris: Presses Universitaires de France.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Pedemonte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pedemonte, B., Reid, D. The role of abduction in proving processes. Educ Stud Math 76, 281–303 (2011). https://doi.org/10.1007/s10649-010-9275-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-010-9275-0

Keywords

Navigation