Educational Psychology Review

, Volume 28, Issue 4, pp 717–741 | Cite as

Eight Ways to Promote Generative Learning

  • Logan FiorellaEmail author
  • Richard E. Mayer
Review Article


Generative learning involves actively making sense of to-be-learned information by mentally reorganizing and integrating it with one’s prior knowledge, thereby enabling learners to apply what they have learned to new situations. In this article, we present eight learning strategies intended to promote generative learning: summarizing, mapping, drawing, imagining, self-testing, self-explaining, teaching, and enacting. First, we provide an overview of generative learning theory, grounded in Wittrock’s (1974) generative model of comprehension and reflected in more recent frameworks of active learning, such as Mayer’s (2014) select-organize-integrate (SOI) framework. Next, for each of the eight generative learning strategies, we provide a description, review exemplary research studies, discuss potential boundary conditions, and provide practical recommendations for implementation. Finally, we discuss the implications of generative learning for the science of learning, and we suggest directions for further research.


Generative learning Learning strategies Comprehension Transfer 


  1. Agostinho, S., Tindall-Ford, S., Ginns, P., Howard, S. J., Leahy, W., & Paas, F. (2015). Giving learning a helping hand: finger tracing of temperature graphs on an iPad. Educational Psychology Review, 27(3), 427–443. doi: 10.1007/s10648-015-9315-5.CrossRefGoogle Scholar
  2. Alesandrini, K. L. (1981). Pictorial-verbal and analytic-holistic learning strategies in science learning. Journal of Education and Psychology, 73, 358–368. doi: 10.1037/0022-0663.73.3.358.CrossRefGoogle Scholar
  3. Aleven, V. A., & Koedinger, K. R. (2002). An effective metacognitive strategy: learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26(2), 147–179. doi: 10.1016/S0364-0213(02)00061-7.CrossRefGoogle Scholar
  4. Allen, G. A., Mahler, W. A., & Estes, W. K. (1969). Effects of recall tests on long-term retention of paired-associates. Journal of Verbal Learning and Behavior, 8(4), 463–470. doi: 10.1016/S0022-5371(69)80090-3.CrossRefGoogle Scholar
  5. Anderson, M. C. M., & Thiede, K. W. (2008). Why do delayed summaries improve metacomprehension? Acta Psychologica, 128, 110–118. doi: 10.1016/j.actpsy.2007.10.006.CrossRefGoogle Scholar
  6. Annis, L. F. (1983). The processes and effects of peer tutoring. Human Learning, 2, 39–47.Google Scholar
  7. Annis, L. F. (1985). Student-generated paragraph summaries and the information-processing theory of prose learning. Journal of Experimental Education, 54(1), 4–10.CrossRefGoogle Scholar
  8. Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: a proposed system and its control processes. The Psychology of Learning and Motivation, 2, 89–195.CrossRefGoogle Scholar
  9. Ausubel, D. P. (1960). The use of advance organizers in the learning and retention of meaningful verbal material. Journal of Education and Psychology, 51, 267–272. doi: 10.1037/h0046669.CrossRefGoogle Scholar
  10. Bargh, J. A., & Schul, Y. (1980). On the cognitive benefits of teaching. Journal of Education and Psychology, 72(5), 593–604. doi: 10.1037/0022-0663.72.5.593.CrossRefGoogle Scholar
  11. Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617–645. doi: 10.1146/annurev.psych.59.103006.093639.CrossRefGoogle Scholar
  12. Bartlett, F. C. (1932). Remembering: a study in experimental and social psychology. Cambridge, England: Cambridge University Press.Google Scholar
  13. Bean, T. W., & Steenwyk, F. L. (1984). The effect of three forms of summarization instruction on sixth graders’ summary writing and comprehension. Journal of Reading Behavior, 16(4), 297–306.Google Scholar
  14. Biswas, G., Leelawong, K., Schwartz, D., & Vye, N. (2005). Learning by teaching: a new paradigm for educational software. Applied Artificial Intelligence, 19(3–4), 363–392. doi: 10.1080/08839510590910200.CrossRefGoogle Scholar
  15. Biazak, J. E., Marley, S. C., & Levin, J. R. (2010). Does an activity-based learning strategy improve preschool children’s memory for narrative passages? Early Childhood Research Quarterly, 25, 515–526. doi: 10.1016/j.ecresq.2010.03.006.CrossRefGoogle Scholar
  16. Blackwell, L. S., Trzesniewski, K. H., & Dweck, C. S. (2007). Implicit theories of intelligence predict achievement across an adolescent transition: a longitudinal study and an intervention. Child Development, 78, 246–263. doi: 10.1111/j.1467-8624.2007.00995.x.CrossRefGoogle Scholar
  17. Bransford, J. D., & Franks, J. J. (1971). The abstraction of linguistic ideas. Cognitive Psychology, 2, 331–350. doi: 10.1016/0010-0285(71)90019-3.CrossRefGoogle Scholar
  18. Bretzing, B. H., & Kulhavy, R. W. (1979). Notetaking and depth of processing. Contemporary Educational Psychology, 4, 145–153. doi: 10.1016/0361-476X(79)90069-9.CrossRefGoogle Scholar
  19. Butler, A. C. (2010). Repeated testing produces superior transfer of learning to repeated studying. Journal of Experimental Psychology. Learning, Memory, and Cognition, 36(5), 1118–1133. doi: 10.1037/a0019902.CrossRefGoogle Scholar
  20. Carbonneau, K. J., Marley, S. C., & Selig, J. P. (2013). A meta-analysis of the efficacy of teaching mathematics with concrete manipulatives. Journal of Education and Psychology, 105(2), 380–400. doi: 10.1037/a0031084.CrossRefGoogle Scholar
  21. Carpenter, S. K. (2012). Testing enhances the transfer of learning. Current Directions in Psychological Science, 21(5), 279–283. doi: 10.1177/0963721412452728.CrossRefGoogle Scholar
  22. Chi, M. T. H. (2000). Self-explaining expository texts: the dual processes of generating inferences and repairing mental models. In R. Glaser (Ed.), Advances in Instructional Psychology (pp. 161–238). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  23. Chi, M. T. H. (2009). Active-constructive-interactive: a conceptual framework for differentiating learning activities. Topics in Cognitive Science, 1, 73–105. doi: 10.1111/j.1756-8765.2008.01005.x.CrossRefGoogle Scholar
  24. Chi, M. T. H., & Wylie, R. (2014). The ICAP framework: linking cognitive engagement to active learning outcomes. Educational Psychologist, 49(4), 219–243. doi: 10.1080/00461520.2014.965823.CrossRefGoogle Scholar
  25. Chi, M. T. H., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). Self-explanations: how students study and use examples in learning to solve problems. Cognitive Science, 18, 439–477. doi: 10.1207/s15516709cog1302_1.Google Scholar
  26. Chi, M. T. H., de Leeuw, N., Chiu, M., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18, 439–477.Google Scholar
  27. Chularut, P., & DeBacker, T. K. (2004). The influence of concept mapping on achievement, self-regulation, and self-efficacy in students of English as a second language. Contemporary Educational Psychology, 29, 248–263. doi: 10.1016/j.cedpsych.2003.09.001.CrossRefGoogle Scholar
  28. Coleman, E. B., Brown, A. L., & Rivkin, I. D. (1997). The effect of instructional explanations on learning from scientific texts. Journal of the Learning Sciences, 6(4), 347–365. doi: 10.1207/s15327809jls0604_1.CrossRefGoogle Scholar
  29. Cook, L. K., & Mayer, R. E. (1988). Teaching students about the structure of scientific text. Journal of Education and Psychology, 80(4), 448–456. doi: 10.1037/0022-0663.80.4.448.CrossRefGoogle Scholar
  30. Cook, S. W., Mitchell, Z., & Goldin-Meadow, S. (2008). Gesturing makes learning last. Cognition, 106, 1047–1058. doi: 10.1016/j.cognition.2007.04.010.CrossRefGoogle Scholar
  31. Cooper, G., Tindall-Ford, S., Chandler, P., & Swller, J. (2001). Learning by imagining. Journal of Experimental Psychology. Applied, 7, 68–82. doi: 10.1037/1076-898X.7.1.68.CrossRefGoogle Scholar
  32. Darabi, A. A., Nelson, D. W., & Palanki, S. (2007). Acquisition of troubleshooting skills in a computer simulation: worked example vs. conventional problem solving instructional strategies. Computers in Human Behavior, 23, 1809–1819. doi: 10.1016/j.chb.2005.11.001.CrossRefGoogle Scholar
  33. De Koning, B. B., Tabbers, H. K., Rikers, R. M. J. P., & Paas, F. (2011). Improved effectiveness of cueing by self-explanations when learning from a complex animation. Applied Cognitive Psychology, 25, 183–194. doi: 10.1002/acp.1661.CrossRefGoogle Scholar
  34. Dembo, M. H., & Junge, L. G. (2005). Learning strategies. In H. F. O’Neil (Ed.), What works in distance learning: guidelines (pp. 25–40). Greenwich, CT: Information Age Publishing.Google Scholar
  35. Doctorow, M., Wittrock, M. C., & Marks, C. (1978). Generative processes in reading comprehension. Journal of Education and Psychology, 70(2), 109–118. doi: 10.1037/0022-0663.70.2.109.CrossRefGoogle Scholar
  36. Dunlosky, J., & Lipko, A. R. (2007). Metacomprehension: a brief history and how to improve its accuracy. Current Directions in Psychological Science, 16(4), 228–232. doi: 10.1111/j.1467-8721.2007.00509.x.CrossRefGoogle Scholar
  37. Dunlosky, J., Rawson, K. A., Marsh, E. J., Nathan, M. J., & Willingham, D. T. (2013). Improving students’ learning with effective learning techniques: promising direction from cognitive and educational psychology. Psychological Science and the Public Interest, 14, 4–58. doi: 10.1177/1529100612453266.CrossRefGoogle Scholar
  38. Fiorella, L., & Mayer, R. E. (2013). The relative benefits of learning by teaching and teaching expectancy. Contemporary Educational Psychology, 38(4), 281–288. doi: 10.1016/j.cedpsych.2013.06.001.CrossRefGoogle Scholar
  39. Fiorella, L., & Mayer, R. E. (2014). Role of expectations and explanations in learning by teaching. Contemporary Educational Psychology, 39(2), 75–85. doi: 10.1016/j.cedpsych.2014.01.001.CrossRefGoogle Scholar
  40. Fiorella, L., & Mayer, R. E. (2015). Learning as a generative activity: eight learning strategies that promote understanding. New York: Cambridge University Press. doi: 10.1017/CBO9781107707085.CrossRefGoogle Scholar
  41. Fonseca, B. A., & Chi, M. T. H. (2011). Instruction based on self-explanation. In R. E. Mayer & P. A. Alexander (Eds.), Handbook of Research in Learning and Instruction (pp. 296–319). New York, NY: Routledge.Google Scholar
  42. Friend, R. (2001). Effects of strategy instruction on summary writing of college students. Contemporary Educational Psychology, 26, 3–24. doi: 10.1006/ceps.1999.1022.CrossRefGoogle Scholar
  43. Fujimura, N. (2001). Facilitating children’s proportional reasoning: a model of reasoning processes and effects of intervention on strategy change. Journal of Education and Psychology, 93(3), 589–603. doi: 10.1037/0022-0663.93.3.589.CrossRefGoogle Scholar
  44. Fyfe, E. R., McNeil, N. M., Son, J. Y., & Goldstone, R. L. (2014). Concreteness fading in mathematics and science instruction: a systematic review. Educational Psychology Review, 117. 10.1007/s10648-014-9249-3
  45. Glenberg, A. M. (2008). Embodiment for education. In P. Calvo & T. Gomila (Eds.), Handbook of cognitive science: an embodied approach (pp. 355–372). Amsterdam, the Netherlands: Elsevier.CrossRefGoogle Scholar
  46. Glenberg, A. M., Goldberg, A. B., & Zhu, X. (2011). Improving early reading comprehension using embodied CAI. Instructional Science, 39, 27–39. doi: 10.1007/s11251-009-9096-7.CrossRefGoogle Scholar
  47. Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S., & Kaschak, M. P. (2004). Activity and imagined activity can enhance young children’s reading comprehension. Journal of Education and Psychology, 96(3), 424–436. doi: 10.1037/0022-0663.96.3.424.CrossRefGoogle Scholar
  48. Ginns, P., Chandler, P., & Sweller, J. (2003). When imagining information is effective. Contemporary Educational Psychology, 28, 229–251. doi: 10.1016/S0361-476X(02)00016-4.CrossRefGoogle Scholar
  49. Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36, 39–53. doi: 10.1002/(SICI)1098-2736(199901)36:1.CrossRefGoogle Scholar
  50. Goldin-Meadow, S., & Alibali, M. W. (2013). Gesture’s role in speaking, learning, and creating language. Annual Review of Psychology, 64, 257–283. doi: 10.1146/annurev-psych-113011-143802.CrossRefGoogle Scholar
  51. Goldin-Meadow, S., Cook, S. W., & Mitchell, Z. A. (2009). Gesturing gives children new ideas about math. Psychological Science, 20(3), 267–272. doi: 10.1111/j.1467-9280.2009.02297.x.CrossRefGoogle Scholar
  52. Grabowski, B. L. (2004). Generative learning contributions to the design of instruction and learning. In D. H. Jonassen (Ed.), Handbook of research on educational communications and technology (2nd ed., pp. 719–743). Mahwah, NJ: Lawrence Erlbaum Associates.Google Scholar
  53. Hattie, J. (2011). Visible learning. New York, NY: Routledge.Google Scholar
  54. Hilbert, T. S., & Renkl, A. (2009). Learning how to use a computer-based concept-mapping tool: self-explaining examples helps. Computers in Human Behavior, 25, 267–274. doi: 10.1016/j.chb.2008.12.006.CrossRefGoogle Scholar
  55. Holley, C. D., & Dansereau, D. F. (Eds.). (1984). Spatial learning strategies. Orlando, FL: Academic Press.Google Scholar
  56. Holley, C. D., Dansereau, D. F., McDonald, B. A., Garland, J. C., & Collins, K. W. (1979). Evaluation of a hierarchical mapping technique as an aid to prose processing. Contemporary Educational Psychology, 4, 227–237. doi: 10.1016/0361-476X(79)90043-2.CrossRefGoogle Scholar
  57. Hoogerheide, V., Loyens, S. M. M., & van Gog, T. (2014). Effects of creating video-based modeling examples on learning and transfer. Learning and Instruction, 33, 108–119. doi: 10.1016/j.learninstruc.2014.04.005.CrossRefGoogle Scholar
  58. Hutto, D. D., Kirchhoff, M. D., & Abrahamson, D. (2015). The enactive roots of STEM: rethinking educational design in mathematics. Educational Psychology Review, 27(3), 371–389.CrossRefGoogle Scholar
  59. Jairam, D., Kiewra, K. A., Rogers-Kasson, S., Patterson-Hazley, M., & Marxhausen, K. (2014). SOAR versus SQ3R: a test of two study systems. Instructional Science, 42, 409–420.CrossRefGoogle Scholar
  60. Johnson, C. I., & Mayer, R. E. (2009). A testing effect with multimedia learning. Journal of Education and Psychology, 101(3), 621–629. doi: 10.1037/a0015183.CrossRefGoogle Scholar
  61. Johnson, C. I., & Mayer, R. E. (2010). Applying the self-explanation principle to multimedia learning in a computer-based game-like environment. Computers in Human Behavior, 26, 1246–1252. doi: 10.1016/j.chb.2010.03.025.CrossRefGoogle Scholar
  62. Juarez Collazo, N. A., Elen, J., & Clarebout, C. (2015). The multiple effects of combined tools in computer-based learning environments. Computers in Human Behavior, 51A, 82–95. doi: 10.1016/j.chb.2015.04.050.CrossRefGoogle Scholar
  63. Kang, S. H. K., McDermott, K. B., & Roediger, H. L., III. (2007). Test format and corrective feedback modify the effect of testing on long-term retention. European Journal of Cognitive Psychology, 19(4–5), 528–558. doi: 10.1080/09541440601056620.CrossRefGoogle Scholar
  64. Karpicke, J. D. (2012). Retrieval-based learning: active retrieval promotes meaningful learning. Current Directions in Psychological Science, 21(3), 157–163. doi: 10.1177/0963721412443552.CrossRefGoogle Scholar
  65. Karpicke, J. D., & Aue, W. R. (2015). The testing effect is alive and well with complex materials. Educational Psychology Review, 27(2), 317–326. doi: 10.1007/s10648-015-9309-3.CrossRefGoogle Scholar
  66. Karpicke, J. D., & Grimaldi, P. J. (2012). Retrieval-based learning: a perspective for enhancing meaningful learning. Educational Psychology Review, 24(3), 401–418. doi: 10.1007/s10648-012-9202-2.CrossRefGoogle Scholar
  67. Karpicke, J. D., Blunt, J. R., Smith, M. A., & Karpicke, S. S. (2014). Retrieval-based learning: the need for guided retrieval in elementary school children. Journal of Applied Research in Memory and Cognition, 3(3), 198–206. doi: 10.1016/j.jarmac.2014.07.008.CrossRefGoogle Scholar
  68. Karpicke, J. D., Butler, A. C., & Roediger, H. L. I. I. I. (2009). Metacognitive strategies in student learning: do students practice retrieval when they study on their own? Memory, 17(4), 471–479. doi: 10.1080/09658210802647009.CrossRefGoogle Scholar
  69. Katona, G. (1940). Organizing and memorizing. New York, NY: Columbia University Press.Google Scholar
  70. Kiewra, K. A. (2005). Learn how to study and SOAR to success. Upper Saddle River, NJ: Pearson Prentice Hall.Google Scholar
  71. King, J. R., Biggs, S., & Lipsky, S. (1984). Students’ self-questioning and summarizing as reading study strategies. Journal of Reading Behavior, 16(3), 205–218.Google Scholar
  72. King, A. (1994). Guiding knowledge construction in the classroom: effects of teaching children how to question and how to explain. American Educational Research Journal, 31(2), 338–368. doi: 10.3102/00028312031002338.CrossRefGoogle Scholar
  73. Kintsch, W. (1998). Comprehension. New York: Cambridge University Press.Google Scholar
  74. Kintsch, W., & van Dijk, T. A. (1978). Toward a model of text comprehension and production. Psychological Review, 85, 363–394. doi: 10.1037/0033-295X.85.5.363.CrossRefGoogle Scholar
  75. Kontra, C., Lyons, D. J., Fischer, S. M., & Beilock, S. L. (2015). Physical experience enhances science learning. Psychological Science, 26(6), 737–749. doi: 10.1177/0956797615569355.CrossRefGoogle Scholar
  76. Kurby, C. A., Magliano, J. P., Dandotkar, S., Woehrle, J., Gilliam, S., & McNamara, D. S. (2012). Changing how students process and comprehend texts with computer-based self-explanation training. Journal of Educational Computing Research, 4(4), 429–459. doi: 10.2190/EC.47.4.e.CrossRefGoogle Scholar
  77. Leahy, W., & Sweller, J. (2005). Interactions among the imagination, expertise reversal, and element interactivity effects. Journal of Experimental Psychology, 11, 266––276. doi: 10.1037/1076-898X.11.4.266.Google Scholar
  78. Leahy, W., & Sweller, J. (2008). The imagination effect increases with an increased intrinsic cognitive load. Applied Cognitive Psychology, 22, 273–283. doi: 10.1002/acp.1373.CrossRefGoogle Scholar
  79. Leahy, W., Hanham, J., & Sweller, J. (2015). High element interactivity information during problem solving may lead to failure to obtain the testing effect. Educational Psychology Review. doi: 10.1007/s10648-015-9296-4.
  80. Leopold, C., & Leutner, D. (2012). Science text comprehension: drawing, main idea selection, and summarizing as learning strategies. Learning and Instruction, 27, 40–49. doi: 10.1016/j.learninstruc.2011.05.005.CrossRefGoogle Scholar
  81. Leopold, C., & Mayer, R. E. (2015). An imagination effect in learning from scientific text. Journal of Education and Psychology, 107, 47–63. doi: 10.1037/a0037142.CrossRefGoogle Scholar
  82. Leutner, D., Leopold, C., & Sumfleth, E. (2009). Cognitive load and science text comprehension: effects of drawing and mental imagining text content. Computers in Human Behavior, 25, 284–289. doi: 10.1016/j.chb.2008.12.010.CrossRefGoogle Scholar
  83. Leutner, D., & Schmeck, A. (2014). The drawing principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (Second Editionth ed., pp. 433–448). New York: Cambridge University Press. doi: 10.1017/CBO9781139547369.CrossRefGoogle Scholar
  84. Lin, L., & Zabrucky, K. M. (1998). Calibration of comprehension: research and implications for education and instruction. Contemporary Educational Psychology, 23(4), 345–391. doi: 10.1006/ceps.1998.0972.CrossRefGoogle Scholar
  85. Little, J. L., & McDaniel, M. A. (2015). Metamemory monitoring and control following retrieval practice for text. Memory & Cognition, 43(1), 85–98. doi: 10.3758/s13421-014-0453-7.CrossRefGoogle Scholar
  86. Marley, S. C., & Carbonneau, K. J. (2014). Future directions for theory and research with instructional manipulatives: commentary on the special issue papers. Educational Psychology Review, 26(1), 91–100. doi: 10.1007/s10648-014-9259-1.CrossRefGoogle Scholar
  87. Marley, S. C., Levin, J. R., & Glenberg, A. M. (2010). What cognitive benefits does an activity-based reading strategy afford young Native American readers? Journal of Experimental Education, 78(3), 395–417. doi: 10.1080/00220970903548061.CrossRefGoogle Scholar
  88. Marley, S. C., & Szabo, Z. (2010). Improving children’s listening comprehension with a manipulation strategy. Journal of Educational Research, 103(4), 227–238. doi: 10.1080/00220670903383036.CrossRefGoogle Scholar
  89. Mayer, R. E. (2009). Multimedia learning (2nd ed.). New York: Cambridge University Press.CrossRefGoogle Scholar
  90. Mayer, R. E. (2014). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (Second Editionth ed., pp. 43–71). New York: Cambridge University Press. doi: 10.1017/CBO9781139547369.CrossRefGoogle Scholar
  91. Mayer, R. E., & Johnson, C. I. (2010). Adding instructional features that promote learning in a game-like environment. Journal of Educational Computing Research, 42(3), 241–265. doi: 10.2190/EC.42.3.a.CrossRefGoogle Scholar
  92. Mayer, R. E., & Wittrock, M. C. (1996). Problem solving and transfer. In D. Berliner & R. Calfee (Eds.), Handbook of educational psychology (pp. 45–61). New York, NY: Macmillan.Google Scholar
  93. Mayer, R. E., & Wittrock, M. C. (2006). Problem solving. In P. Alexander, P. Winne, & G. Phye (Eds.), Handbook of educational psychology (pp. 287–303). Mahwah, NJ: Erlbaum.Google Scholar
  94. McDaniel, M. A., Anderson, J. L., Derbish, M. H., & Morrisette, N. (2007). Testing the testing effect in the classroom. European Journal of Cognitive Psychology, 19(4–5), 494–513. doi: 10.1080/09541440701326154.CrossRefGoogle Scholar
  95. McDaniel, M. A., Wildman, K. M., & Anderson, J. L. (2012). Using quizzes to enhance summative-assessment performance in a web-based class: an experimental study. Journal of Applied Research in Memory and Cognition, 1, 18–26. doi: 10.1016/j.jarmac.2011.10.001.CrossRefGoogle Scholar
  96. McNeil, N. M., & Fyfe, E. R. (2012). “Concreteness fading” promotes transfer of mathematical knowledge. Learning and Instruction, 22, 440–448. doi: 10.1016/j.learninstruc.2012.05.001.CrossRefGoogle Scholar
  97. Merrill, M. D. (2012). First principles of instruction. San Francisco: Pfeiffer.Google Scholar
  98. Muis, K. R., Psaradellis, C., Chevrier, M., Leo, I. D., & Lajoie, S. P. (2015a). Learning by preparing to teach: Fostering self-regulatory processes and achievement during complex mathematics problem solving. Journal of Educational Psychology. doi: 10.1037/edu0000071.
  99. Muis, K. R., Psaradellis, C., Lajoie, S. P., Leo, I. D., & Chevrier, M. (2015b). The role of epistemic emotions in mathematics problem solving. Contemporary Educational Psychology, 42, 172–185.CrossRefGoogle Scholar
  100. Nesbit, J. C., & Adelsope, O. O. (2006). Learning with concept and knowledge maps: a meta-analysis. Review of Educational Research, 76, 413–448. doi: 10.3102/00346543076003413.CrossRefGoogle Scholar
  101. Nist, S. L., & Holschuh, J. L. (2000). Comprehension strategies at the college level. In R. F. Flippo & D. C. Caverly (Eds.), Handbook of college reading and study strategy research (pp. 75–104). Mahwah, NJ: Erlbaum.Google Scholar
  102. Novak, J. D. (2010). Learning, creating, and using knowledge: concept maps as facilitative tools in schools and corporations (2nd ed.). New York, NY: Routledge.Google Scholar
  103. Novack, M., & Goldin-Meadow, S. (2015). Learning from gesture: how our hands change our minds. Educational Psychology Review, 27(3), 405–412. doi: 10.1007/s10648-015-9325-3.CrossRefGoogle Scholar
  104. Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24, 27–45. doi: 10.1007/s10648-011-9179-2.CrossRefGoogle Scholar
  105. Paunesku, D., Walton, G. M., Romero, C., Smith, E. N., Yeager, D. S., & Dweck, C. S. (2015). Mind-set interventions are a scalable treatment for academic underachievement. Psychological Science, 26(6), 784–793. doi: 10.1177/0956797615571017.CrossRefGoogle Scholar
  106. Piaget, J. (1926). The language and thought of the child. London: Kegan Paul, Trench, Trubner and Company.Google Scholar
  107. Ponce, H. R., & Mayer, R. E. (2014). Qualitatively different cognitive processing during online reading primed by different study activities. Computers in Human Behavior, 30, 121–130. doi: 10.1016/j.chb.2013.07.054.CrossRefGoogle Scholar
  108. Pouw, W. T. J. L., van Gog, T., & Paas, F. (2014). An embedded and embodied cognition review of instructional manipuluatives. Educational Psychology Review, 26(1), 51–72. doi: 10.1007/s10648-014-9255-5.CrossRefGoogle Scholar
  109. Palincsar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1, 117–175. doi: 10.1207/s1532690xci0102_1.CrossRefGoogle Scholar
  110. Peper, R. J., & Mayer, R. E. (1986). Generative effects of note-taking during science lectures. Journal of Education and Psychology, 78(1), 34–38. doi: 10.1037/0022-0663.78.1.34.CrossRefGoogle Scholar
  111. Pressley, M., Symons, S., McGoldrick, J. A., & Snyder, B. L. (1995). Reading comprehension strategies. In M. Pressley & V. Woloshyn (Eds.), Cognitive strategy instruction that really improves children’s academic performance (pp. 57–100). Cambridge, MA: Brookline.Google Scholar
  112. Rawson, K. A. (2015). The status of the testing effect for complex materials: still a winner. Educational Psychology Review, 27(2), 327–331. doi: 10.1007/s10648-015-9308-4.CrossRefGoogle Scholar
  113. Redford, J. S., Thiede, K. W., Wiley, J., & Griffin, T. D. (2012). Concept mapping improves metacomprehension accuracy among 7th graders. Learning and Instruction, 22(4), 262–270. doi: 10.1016/j.learninstruc.2011.10.007.CrossRefGoogle Scholar
  114. Renkl, A. (2014). The worked examples principle in multimedia learning. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (Second editionth ed., pp. 391–412). New York: Cambridge University Press. doi: 10.1017/CBO9781139547369.CrossRefGoogle Scholar
  115. Renkl, A., Stark, R., Gruber, H., & Mandl, H. (1998). Learning from worked-out examples: the effects of example variability and elicited self-explanations. Contemporary Educational Psychology, 23, 90–108. doi: 10.1006/ceps.1997.0959.CrossRefGoogle Scholar
  116. Roediger, H. L., III, & Karpicke, J. D. (2006). Test-enhanced learning: taking memory tests improves long-term retention. Psychological Science, 17, 249–255. doi: 10.1111/j.1467-9280.2006.01693.x.CrossRefGoogle Scholar
  117. Roscoe, R. D. (2014). Self-monitoring and knowledge-building in learning by teaching. Instructional Science, 42, 327–351. doi: 10.1007/s11251-013-9283-4.CrossRefGoogle Scholar
  118. Roscoe, R. D., & Chi, M. T. H. (2007). Understanding tutor learning: knowledge-building and knowledge-telling in peer tutors’ explanations and questions. Review of Educational Research, 77(4), 534–574. doi: 10.3102/0034654307309920.CrossRefGoogle Scholar
  119. Roscoe, R. D., & Chi, M. T. H. (2008). Tutor learning: the role of explaining and responding to questions. Instructional Science, 36(4), 321–350. doi: 10.1007/s11251-007-9034-5.CrossRefGoogle Scholar
  120. Ross, S. M., & Kirby, F. J. (1976). Oral summary as a review strategy for enhancing recall of textual material. Journal of Education and Psychology, 68(6), 686–695. doi: 10.1037/0022-0663.68.6.689.CrossRefGoogle Scholar
  121. Rowland, C. A. (2014). The effect of testing versus restudy on retention: a meta-analytic review of the testing effect. Psychological Bulletin, 140(6), 1432–1463. doi: 10.1037/a0037559.CrossRefGoogle Scholar
  122. Schwamborn, A., Mayer, R. E., Thillmann, H., Leopold, C., & Leutner, D. (2010). Drawing as a generative activity and drawing as a prognostic activity. Journal of Education and Psychology, 102, 872–879. doi: 10.1037/a0019640.CrossRefGoogle Scholar
  123. Selcuk, G. S., Sahin, M., & Acikgoz, K. U. (2011). The effects of learning strategy instruction on achievement, attitude, and achievement motivation in a physics course. Research in Science Education, 41(1), 39–62. doi: 10.1007/s11165-009-9145-x.CrossRefGoogle Scholar
  124. Selig, J. P., Preacher, K. J., & Little, T. D. (2012). Modeling time-dependent association in longitudinal data: a lag as moderator approach. Multivariate Behavioral Research, 47(5), 697–716. doi: 10.1080/00273171.2012.715557.CrossRefGoogle Scholar
  125. Slavin, R. E. (1983). Cooperative learning. New York: Longman.Google Scholar
  126. Stieff, M., Dixon, B. L., Ryu, M., Kumi, B. C., & Hegarty, M. (2014). Strategy training eliminates sex differences in spatial problem solving in a STEM domain. Journal of Education and Psychology, 106(2), 390–402. doi: 10.1037/a0034823.CrossRefGoogle Scholar
  127. Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.CrossRefGoogle Scholar
  128. Taylor, B. M., & Beach, R. W. (1984). The effects of text structure instruction on middle-grade students’ comprehension and production of expository text. Reading Research Quarterly, 19(2), 134–146. doi: 10.2307/747358.CrossRefGoogle Scholar
  129. Thiede, K. W., & Anderson, M. C. M. (2003). Summarizing can improve metacomprehension accuracy. Contemporary Educational Psychology, 28(2), 129–160. doi: 10.1016/S0361-476X(02)00011-5.CrossRefGoogle Scholar
  130. Thiede, K. W., Anderson, M. C. M., & Therriault, D. (2003). Accuracy of metacognitive monitoring affects learning of texts. Journal of Education and Psychology, 95(1), 66–73. doi: 10.1037/0022-0663.95.1.66.CrossRefGoogle Scholar
  131. Uttal, D. H., Liu, L. L., & DeLoache, J. S. (1999). Taking a hard look at concreteness: do concrete objects help young children learn symbolic relations? In L. Balter & C. S. Tamis-LeMonde (Eds.), Child psychology: a handbook of contemporary issues (pp. 177–192). New York: Psychology Press.Google Scholar
  132. Van Gog, T., & Kester, L. (2012). A test of the testing effect: acquiring problem-solving skills from worked examples. Cognitive Science, 110. 10.1111/cogs.12002
  133. Van Gog, T., & Sweller, J. (2015). Not new, but nearly forgotten: the testing effect decreases or even disappears as the complexity of learning materials increases. Educational Psychology Review, 27(2), 247–264. doi: 10.1007/s10648-015-9310-x.CrossRefGoogle Scholar
  134. Van Gog, T., Kester, L., Dirkx, K., Hoogerheide, V., Boerboom, J., & Verkoeijen, P. P. J. L. (2015). Testing after worked example study does not enhance delayed problem-solving performance compared to restudy. Educational Psychology Review. doi: 10.1007/s10648-015-9297-3.
  135. Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Education and Psychology, 69, 129–140. doi: 10.1037/0022-0663.93.1.129.CrossRefGoogle Scholar
  136. Van Meter, P., & Garner, J. (2005). The promise and practice of learner-generated drawing: literature review and synthesis. Educational Psychology Review, 17, 285–325. doi: 10.1007/s10648-005-8136-3.CrossRefGoogle Scholar
  137. Van Meter, P. (2013). Cognitive model of drawing construction: learning through the construction of drawings. In G. Schraw, M. T. McCrudden, & D. Robinson (Eds.), Learning through visual displays (pp. 247–280). Charlotte, NC: Information Age Publishing.Google Scholar
  138. Van Meter, P., Aleksic, M., Schwartz, A., & Garner, J. (2006). Learner-generated drawing as a strategy for learning from content area text. Contemporary Educational Psychology, 31, 142–166. doi: 10.1016/j.cedpsych.2005.04.001.CrossRefGoogle Scholar
  139. Webb, N. M. (1982). Peer interaction and learning in cooperative small groups. Journal of Education and Psychology, 74(5), 642–655. doi: 10.1037/0022-0663.74.5.642.CrossRefGoogle Scholar
  140. Weinstein, C. E., & Mayer, R. E. (1986). The teaching of learning strategies. In M. C. Wittrock (Ed.), Handbook of research on teaching (3rd ed., pp. 315–327). New York: Macmillan.Google Scholar
  141. Wertheimer, M. (1959). Productive thinking. New York, NY: Harper & Row.Google Scholar
  142. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636. doi: 10.3758/BF03196322.CrossRefGoogle Scholar
  143. Wittrock, M. C. (1974). Learning as a generative process. Educational Psychologist, 11(2), 87–95. doi: 10.1080/00461520903433554.CrossRefGoogle Scholar
  144. Wittrock, M. C. (1989). Generative processes of comprehension. Educational Psychologist, 24(4), 345–376. doi: 10.1207/s15326985ep2404_2.CrossRefGoogle Scholar
  145. Wittrock, M. C. (1991). Educational psychology, literacy, and reading comprehension. Educational Psychologist, 26, 109–116. doi: 10.1207/s15326985ep2602_3.CrossRefGoogle Scholar
  146. Wittrock, M. C. (1992). Generative processes of the brain. Educational Psychologists, 27, 531–541. doi: 10.1207/s15326985ep2704_8.CrossRefGoogle Scholar
  147. Wittrock, M. C., & Alesandrini, K. (1990). Generation of summaries and analogies and analytic and holistic abilities. American Educational Research Journal, 27(3), 489–502.Google Scholar
  148. Wylie, R., & Chi, M. T. H. (2014). The self-explanation principle in multimedia learning. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (Second editionth ed., pp. 413–432). New York: Cambridge University Press. doi: 10.1017/CBO9781139547369.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Educational PsychologyUniversity of GeorgiaAthensUSA
  2. 2.University of CaliforniaSanta BarbaraUSA

Personalised recommendations