Skip to main content

Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work

Abstract

Domain-general cognitive knowledge has frequently been used to explain skill when domain-specific knowledge held in long-term memory may provide a better explanation. An emphasis on domain-general knowledge may be misplaced if domain-specific knowledge is the primary factor driving acquired intellectual skills. We trace the long history of attempts to explain human cognition by placing a primary emphasis on domain-general skills with a reduced emphasis on domain-specific knowledge and indicate how otherwise unintelligible data can be easily explained by assumptions concerning the primacy of domain-specific knowledge. That primacy can be explained by aspects of evolutionary educational psychology. Once the importance of domain-specific knowledge is accepted, instructional design theories and processes are transformed.

This is a preview of subscription content, access via your institution.

References

  • Ackerman, P. L. (2000). Domain-specific knowledge as the "Dark matter" of adult intelligence: Gf/Gc, personality and interest correlates. Journals of Gerontology Series B-Psychological Sciences and Social Sciences, 55, 69–84.

    Article  Google Scholar 

  • Amadieu, F., Tricot, A., & Mariné, C. (2009). Effects of prior knowledge diversity on learning with a non-linear electronic document: Disorientation and coherence of the reading sequence. Computers in Human Behavior, 25, 381–388. doi:10.1016/j.chb.2008.12.017.

    Article  Google Scholar 

  • Anzai, Y., & Simon, H. A. (1979). Theory of learning by doing. Psychological Review, 86, 124–140. doi:10.1037//0033-295x.86.2.124.

    Article  Google Scholar 

  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2, pp. 89–195). New York: Academic Press.

    Google Scholar 

  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.

    Google Scholar 

  • Bainbridge, L. (1975). Working memory in air-traffic control. Unpublished paper, University of Reading. Retrieved December 11, 2011, from http://www.bainbrdg.demon.co.uk/Papers/WMemory.html.

  • Binet, A. (1892). Le calculateur Jacques Inaudi [The calculator Jacques Inaudi]. Revue des deux Mondes, 111, 905–924.

    Google Scholar 

  • Binet, A. (1894). Psychologie des grands calculateurs et joueurs d’échecs [Psychology of great calculators and chess players]. Paris: Hachette.

    Google Scholar 

  • Bisseret, A. (1970). Mémoire opérationelle et structure du travail [Working memory and work structure]. Bulletin de Psychologie, 24, 280-294. English summary published in 1971: Analysis of mental processes involved in air traffic control. Ergonomics, 14, 565-570.

  • Brinch, C. N. (2012). Schooling in adolescence raises IQ scores. Proceedings of The National Academy of Sciences of The United States of America, 109, 425–430. doi:10.1073/pnas.1106077109.

    Article  Google Scholar 

  • Cahan, S., & Cohen, N. (1989). Age versus schooling effects on intelligence development. Child Development, 60, 1239–1249. doi:10.1111/j.1467-8624.1989.tb03554.x.

    Article  Google Scholar 

  • Chanquoy, L., Tricot, A., & Sweller, J. (2007). La charge cognitive. Paris: Armand Colin.

    Google Scholar 

  • Chase, W. G., & Ericsson, K. A. (1982). Skill and working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (Vol. 16, pp. 1–58). New York: Academic Press.

    Google Scholar 

  • Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81. doi:10.1016/0010-0285(73)90004-2.

    Article  Google Scholar 

  • Chi, M. T. H. (1978). Knowledge structures and memory development. In R. Siegler (Ed.), Children’s thinking: What develops? (pp. 73–96). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Chi, M. T. H. (1993). Experts vs novices knowledge—A citation-classic commentary on categorization and representation of physics problems by experts and novices by Chi, M.T.H., Feltovich, P., Glaser, R. Current Contents/Social & Behavioral Sciences, 42, 8-8.

  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5, 121–152. doi:10.1207/s15516709cog0502_2.

    Article  Google Scholar 

  • Chiesi, H. L., Spilich, G. J., & Voss, J. F. (1979). Acquisition of domain-related information in relation to high and low domain knowledge. Journal of Verbal Learning and Verbal Behavior, 18, 257–273. doi:10.1016/s0022-5371(79)90146-4.

    Article  Google Scholar 

  • Cliffordson, C., & Gustafsson, J. E. (2008). Effects of age and schooling on intellectual performance: Estimates obtained from analysis of continuous variation in age and length of schooling. Intelligence, 36, 143–152. doi:10.1016/j.intell.2007.03.006.

    Article  Google Scholar 

  • Conway, A. R. A., Jarrold, C., Kane, M. J., Miyake, A., & Towse, J. (Eds.), (2007). Variation in working memory. Oxford University Press.

  • Cowan, N. (2005). Working memory capacity. Hove: Psychology Press.

    Book  Google Scholar 

  • De Groot, A. (1965). Thought and choice in chess. The Hague, The Netherlands: Mouton (Original work published 1946).

    Google Scholar 

  • Dehaene, S. (1997). The number sense. New York: Oxford University Press.

    Google Scholar 

  • Duncan, R. G. (2007). The role of domain-specific knowledge in generative reasoning about complicated multileveled phenomena. Cognition & Instruction, 25, 271–336.

    Article  Google Scholar 

  • Egan, D. E., & Schwartz, B. J. (1979). Chunking in recall of symbolic drawings. Memory & Cognition, 7, 149–158. doi:10.3758/bf03197595.

    Article  Google Scholar 

  • Ericsson, K. A. (1985). Memory skill. Canadian Journal of Psychology, 39, 188–231. doi:10.1037/h0080059.

    Article  Google Scholar 

  • Ericsson, K. A., & Charness, N. (1994). Expert performance—Its structure and acquisition. American Psychologist, 49, 725–747. doi:10.1037/0003-066x.49.8.725.

    Article  Google Scholar 

  • Ericsson, K. A., & Chase, W. G. (1982). Exceptional memory. American Scientist, 70, 607–615.

    Google Scholar 

  • Ericsson, K. A., & Kintsch, W. (1995). Long-term working-memory. Psychological Review, 102, 211–245. doi:10.1037//0033-295x.102.2.211.

    Article  Google Scholar 

  • Ericsson, K. A., & Lehmann, A. C. (1996). Expert and exceptional performance: Evidence of maximal adaptation to task constraints. Annual Review of Psychology, 47, 273–305. doi:10.1146/annurev.psych.47.1.273.

    Article  Google Scholar 

  • Ericsson, K. A., Krampe, R. T., & Teschromer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100, 363–406. doi:10.1037/0033-295x.100.3.363.

    Article  Google Scholar 

  • Fayol, M. (1994). From declarative and procedural knowledge to the management of declarative and procedural knowledge. European Journal of Psychology of Education, 9, 179–190.

    Article  Google Scholar 

  • Flynn, J. R. (2007). What is intelligence? Beyond the Flynn effect. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Geary, D. C. (2008). An evolutionarily informed education science. Educational Psychologist, 43, 179–195. doi:10.1080/00461520802392133.

    Article  Google Scholar 

  • Geary, D. C. (2012). Evolutionary educational psychology. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (Vol. 1, pp. 597–621). Washington, D.C.: American Psychological Association.

    Google Scholar 

  • Gijlers, H., & de Jong, T. (2005). The relation between prior knowledge and students’ collaborative discovery learning processes. Journal of Research in Science Teaching, 42, 264–282. doi:10.1002/tea.20056.

    Article  Google Scholar 

  • Greiff, S., Wüstenberg, S., Molnar, G., Fischer, A., Funke, J., & Csapo, B. (2013). Complex problem solving in educational settings—Something beyond g: Concept, assessment, measurement invariance, and construct validity. Journal of Educational Psychology, 105, 364–379. doi:10.1037/a0031856.

    Article  Google Scholar 

  • Herrnstein, R. J., & Murray, C. (1994). The Bell curve: Intelligence and class structure in American life. New York: Free Press.

    Google Scholar 

  • Jeffries, R., Turner, A., Polson, P., & Atwood, M. (1981). Processes involved in designing software. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 255–283). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Kalyuga, S., Chandler, P., Tuovinen, J., & Sweller, J. (2001). When problem solving is superior to studying worked examples. Journal of Educational Psychology, 93, 579–588. doi:10.1037/0022-0663.93.3.579.

    Article  Google Scholar 

  • Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist, 41, 75–86.

    Article  Google Scholar 

  • Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Models of competence in solving physics problems. Cognitive Science, 4, 317–345. doi:10.1207/s15516709cog0404_1.

    Article  Google Scholar 

  • Mandelbaum, E. (2013). Numerical architecture. Topics in Cognitive Science, 5, 367–386. doi:10.1111/tops.12014.

    Article  Google Scholar 

  • Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology Applied, 8, 147–154. doi:10.1037//1076-898x.8.3.147.

    Article  Google Scholar 

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  Google Scholar 

  • Miller, G. A., Galanter, E., & Pribram, K. H. (1960). Plans and the structure of behavior. New York: Holt, Rinehart & Winston.

    Book  Google Scholar 

  • Neisser, U., Boodoo, G., Bouchard, T. J., Boykin, A. W., Brody, N., Ceci, S. J., et al. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51, 77–101. doi:10.1037/0003-066x.51.2.77.

    Article  Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Nicolas, S., Gounden, Y., & Levine, Z. (2011). The memory of two great mental calculators: Charcot and Binet’s neglected 1893 experiments. American Journal of Psychology, 124, 235–242.

    Article  Google Scholar 

  • Paas, F., & Sweller, J. (2012). An evolutionary upgrade of cognitive load theory: Using the human motor system and collaboration to support the learning of complex cognitive tasks. Educational Psychology Review, 24, 27–45. doi:10.1007/s10648-011-9179-2.

    Article  Google Scholar 

  • Piaget, J. (1972). Intellectual evolution from adolescence to adulthood. Human Development, 15, 1–12.

    Article  Google Scholar 

  • Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning & Instruction, 12, 61–86. doi:10.1016/s0959-4752(01)00016-0.

    Article  Google Scholar 

  • Rikers, R.M.J.P. (2009). Why is not everyone Albert Einstein? Implications of expertise research for educational practice. Cognitive Load Theory Conference, Open University of The Netherlands, Heerlen, March 2-4.

  • Schneider, W., Korkel, J., & Weinert, F. E. (1989). Domain-specific knowledge and memory performance: A comparison of high- and low-aptitude children. Journal of Educational Psychology, 81, 306–312. doi:10.1037/0022-0663.81.3.306.

    Article  Google Scholar 

  • Simon, H. A., & Gilmarti, K. (1973). Simulation of memory for chess positions. Cognitive Psychology, 5, 29–46. doi:10.1016/0010-0285(73)90024-8.

    Article  Google Scholar 

  • Simon, D. P., & Simon, H. A. (1978). Individual differences in solving physics problems. In R. Siegler (Ed.), Children’s thinking: What develops? (pp. 325–348). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Stein, E. S., Garland, D. J., & Muller, J. K. (2010). Air-traffic controller memory. In J.A. Wise, V.D. Hopkin, & D.J. Garland (Eds.). Handbook of aviation human factors (2nd Edition). (pp. 21-1–21-39). Boca Raton: CRC Press.

    Google Scholar 

  • Stelzl, I., Merz, F., Ehlers, T., & Remer, H. (1995). The effect of schooling on the development of fluid and crystallized intelligence: A quasi-experimental study. Intelligence, 21, 279–296. doi:10.1016/0160-2896(95)90018-7.

    Article  Google Scholar 

  • Sweller, J. (2011). Cognitive load theory. In J. Mestre & B. Ross (Eds.), The psychology of learning and motivation: Cognition in education (Vol. 55, pp. 37–76). Oxford: Academic Press.

    Google Scholar 

  • Sweller, J. (2012). Human cognitive architecture: Why some instructional procedures work and others do not. In K. Harris, S. Graham, & T. Urdan (Eds.), APA educational psychology handbook (Vol. 1, pp. 295–325). Washington, D.C.: American Psychological Association.

    Google Scholar 

  • Sweller, J., & Cooper, G. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognition & Instruction, 2, 59–89.

    Article  Google Scholar 

  • Sweller, J., & Sweller, S. (2006). Natural information processing systems. Evolutionary Psychology, 4, 434–458.

    Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. New York: Springer.

    Book  Google Scholar 

  • Yntema, D. B. (1963). Keeping track of several things at once. Human Factors, 5, 7–17.

    Google Scholar 

  • Yntema, D. B., & Mueser, G. E. (1960). Remembering the present states of a number of variables. Journal of Experimental Psychology, 60, 18–22. doi:10.1037/h0040055.

    Article  Google Scholar 

  • Yntema, D. B., & Mueser, G. E. (1962). Keeping track of variables that have few or many states. Journal of Experimental Psychology, 63, 391–395. doi:10.1037/h0045706.

    Article  Google Scholar 

  • Youssef, A., Ayres, P., & Sweller, J. (2012). Using general problem-solving strategies to generate ideas in order to solve geography problems. Applied Cognitive Psychology, 26, 872–877. doi:10.1002/acp.2888.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Tricot.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tricot, A., Sweller, J. Domain-Specific Knowledge and Why Teaching Generic Skills Does Not Work. Educ Psychol Rev 26, 265–283 (2014). https://doi.org/10.1007/s10648-013-9243-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10648-013-9243-1

Keywords

  • Domain-specific knowledge
  • Learning
  • Instruction
  • General skills
  • Cognitive load theory