Skip to main content
Log in

Comparative selectivity of nano and commercial formulations of pirimicarb on a target pest, Brevicoryne brassicae, and its predator Chrysoperla carnea

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Nanotechnology is a new field in the pesticide industry. Nanopesticides represent an emerging technological tool that offers a range of benefits including increased efficacy, durability, and reduction in the amounts of used active ingredients. However, due to the lack of studies on the toxicity and the sublethal effects on pests and natural enemies, the extent of action and fate of these nanopesticdes is still not fully understood limitting thus their wide use. In this study, we encapsulated the pirimicarb insecticide using nanostructured lipid carriers (NLC) and investigated the toxicity and sublethal effects (LC25) of the resulting nanocapsules against the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) and its natural enemy the green lacewings Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Nanoencapsulation of pirimicarb enhanced 12.6-fold its toxicity to cabbage aphids compared to its commercial formulation. Furthermore, analysis of the age-stage, two-sex life table showed that negative effects on the B. brassicae aphid population growth were observed on F0 and F1 generations when aphids of parental (F0) generation were exposed to subelethal dose (LC25) of both formulations of pirimicarb. However, negative effects from sublethal exposure to the commercial and nanoformulated pirimicarb resulted in significant reduction on the net reproductive rate, intrinsic rate of natural increase, and finite rate of increase of the green lacewings C. carnea. Our findings indicate that the approaches and assumptions used to assess the risks of conventional insecticides may not apply for nanopesticides. Further research is still needed to better understand the environmental impact of these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Due to its proprietary nature or ethical concerns, supporting data cannot be made openly available.

References

  • Alford RA, Holmes JA (1986) Sublethal effects of carbaryl, aminocarb, fenitrothion, and Bacillus thuringiensis on the development and fecundity of the spruce budworm (Lepidoptera: Tortricidae). J Econ Entomol 79:31–34

    Article  CAS  Google Scholar 

  • Amini Jam N, Kocheili F, Mossadegh MS, Rasekh A, Saber M (2014) Lethal and sublethal effects of imidacloprid and pirimicarb on the melon aphid, Aphis gossypii Glover (Hemiptera: Aphididae) under laboratory conditions. J Crop Prot 3:89–98

    Google Scholar 

  • Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N (2018) Nanoparticles for pest control: current status and future perspectives. J Pest Sci 91:1–15

    Article  Google Scholar 

  • Benelli G (2018) Mode of action of nanoparticles against insects. Environ Sci Pollut 25:12329–12341

    Article  CAS  Google Scholar 

  • Benelli G, Pavela R, Zorzetto C, Sánchez-Mateo CC, Santini G, Canale A, Maggi F (2019) Insecticidal activity of the essential oil from Schizogyne sericea (Asteraceae) on four insect pests and two non-target species. Entomol Gen 39:9–18

    Article  Google Scholar 

  • Biondi A, Campolo O, Desneux N, Siscaro G, Palmeri V, Zappalà L (2015) Life stage-dependent susceptibility of Aphytis melinus DeBach (Hymenoptera: Aphelinidae) to two pesticides commonly used in citrus orchards. Chemosphere 128:142–147

    Article  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Toxicology rethinks its central belief. Nature 421:691–692

    Article  CAS  Google Scholar 

  • Camara MC, Campos EVR, Monteiro RA, Santo Pereira ADE, de Freitas Proença PL, Fraceto LF (2019) Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J Nanobiotechnol 17:100

    Article  Google Scholar 

  • Campolo O, Cherif A, Ricupero M, Siscaro G, Grissa-Lebdi K et al. (2017) Citrus peel essential oil nanoformulations to control the tomato borer, Tuta absoluta: chemical properties and biological activity. Scientific Reports 7:13036

    Article  Google Scholar 

  • Campolo O, Puglisi I, Barbagallo RN, Cherif A, Ricupero M et al. (2020) Side effects of two citrus essential oil formulations on a generalist insect predator, plant and soil enzymatic activities. Chemosphere 257:127252

    Article  CAS  Google Scholar 

  • Campos EVR et al. (2015) Polymeric and solid lipid nanoparticles for sustained release of carbendazim and tebuconazole in agricultural applications. Sci Rep 5:1–14

    Article  Google Scholar 

  • Chi H, You MS, Atlihan R, Smith CL, Kavousi A et al. (2020) Age-stage, two-sex life table: an introduction to theory, data analysis, and application. Entomol Gen 40:103–124

    Article  Google Scholar 

  • Chi H (2019) TWOSEX-MSChart: a computer program for the age-stage, two-sex life table analysis. http://140.120.197.173/Ecology/

  • Dai C, Ricupero M, Puglisi R, Lu Y, Desneux N, Biondi A, Zappalà L (2020) Can contamination by major systemic insecticides affect the voracity of the harlequin ladybird? Chemosphere 256:126986

    Article  CAS  Google Scholar 

  • Darwish AA-FE-S, Attia MMR (2017) Predicting field generations of the green peach aphid, Myzuspersicae (Sulzer) and its predator, green lace-wing, Chrysoperla carnea (Stephens) by using heat units accumulation and evaluation of some insecticides against their populations Alexandria. J Agric Sci 62:1–9

    Google Scholar 

  • De La Torre-Roche R et al. (2013) Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ Sci Techno 47:12539–12547

    Article  CAS  Google Scholar 

  • Desneux N, O'Neil RJ, Yoo HJS (2006a) Suppression of population growth of the soybean aphid, Aphis glycines Matsumura, by predators: the identification of a key predator, and the effects of prey dispersion, predator density and temperature. Environ Entomol 35:1342–1349

    Article  Google Scholar 

  • Desneux N, Ramirez-Romero R, Kaiser L (2006b) Multistep bioassay to predict recolonization potential of emerging parasitoids after a pesticide treatment. Environ Toxicol Chem 25:2675–2682

    Article  CAS  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Desneux N, Kaplan I, Yoo HJS, Wang S, O’Neil RJ (2019) Temporal synchrony mediates the outcome of indirect effects between prey via a shared predator. Entomol Gen 39:127–136

    Article  Google Scholar 

  • Desneux N, Fauvergue X, Dechaume-Moncharmont F-X, Kerhoas L, Ballanger Y, Kaiser L (2005) Diaeretiella rapae limits Myzus persicae populations after applications of deltamethrin in oilseed rape. J Econ Entomol 98:9–17

    Article  Google Scholar 

  • El-Wakeil N, Gaafar N, Sallam A, Volkmar C (2013) Side effects of insecticides on natural enemies and possibility of their integration in plant protection strategies insecticides: Development of Safer and More Effective Technologies Agricultural and Biological Sciences (Trdan S, ed.) Rijeka, Croatia, InTech Open Access Publisher, p 1–56

  • Fening K et al. (2013) Sustainable management of two key pests of cabbage, Brassica oleracea var. capitata L.(Brassicaceae), using homemade extracts from garlic and hot pepper. Org Agric 3:163–173

    Article  Google Scholar 

  • Ferreira TP et al. (2019) Prolonged mosquitocidal activity of Siparuna guianensis essential oil encapsulated in chitosan nanoparticles. PLoS Negl Trop Dis 13:e0007624

    Article  Google Scholar 

  • Fogel MN, Schneider MI, Desneux N, Gonz lez B, Ronco AE (2013) Impact of the neonicotinoid acetamiprid on immature stages of the predator Eriopis connexa (Coleoptera: Coccinellidae). Ecotoxicology 22:1063–1071

    Article  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li X (2008) A novel photodegradable insecticide: preparation, characterization and properties evaluation of nano-Imidacloprid. Pestic Biochem Physiol 92:83–91

    Article  CAS  Google Scholar 

  • Guan H, Chi D, Yu J, Li H (2010) Dynamics of residues from a novel nano-imidacloprid formulation in soyabean fields. Crop Prot 29:942–946

    Article  CAS  Google Scholar 

  • Guedes RNC, Smagghe G, Stark JD, Desneux N (2016) Pesticide-induced stress in arthropod pests for optimized integrated pest management programs. Annu Rev Entomol 61:43–62

    Article  CAS  Google Scholar 

  • Guedes RNC, Roditakis E, Campos MR, Haddi K et al. (2019) Insecticide resistance in the tomato pinworm Tuta absoluta: patterns, spread, mechanisms, management and outlook. J Pest Sci 92:1329–1342

    Article  Google Scholar 

  • Gul H, Ullah F, Biondi A, Desneux N, Qian D, Gao X, Song D (2019) Resistance against clothianidin and associated fitness costs in the chive maggot, Bradysia odoriphaga. Entomol Gen 39:81–92

    Article  Google Scholar 

  • Hao Z-P, Hou S-M, Hu B-C, Huang F, Dang X-L (2017) Assessment of probing behavior of the cabbage aphid, Brevicoryne brassicae (Hemiptera: Aphididae), on three Brassica napus cultivars at three developmental stages using Electropenetrography (EPG). J Kansa Entomo Soc 90:11–23

    Article  Google Scholar 

  • Hassall K (1990) The biochemistry and uses of pesticides: structure, metabolism, mode of action and uses in crop protection. Biochemistry and uses of pesticides. Macmillan Press, Basingstoke, U.K., p 536

  • Holland J, Oaten H, Moreby S, Birkett T, Simper J, Southway S, Smith B (2012) Agri-environment scheme enhancing ecosystem services: a demonstration of improved biological control in cereal crops. Agric Ecosyst Environ 155:147–152

    Article  Google Scholar 

  • Hullé M, Chaubet B, Turpeau E, Simon JC (2020) Encyclop’Aphid: a website on aphids and their natural enemies. Entomol Gen 40:97–101

  • Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170

    Article  CAS  Google Scholar 

  • Koczor S, Szentkirályi F, Tóth M (2019) New perspectives for simultaneous attraction of Chrysoperla and Chrysopa lacewing species for enhanced biological control (Neuroptera: Chrysopidae). Scientific reports 9:1–6

    Article  CAS  Google Scholar 

  • Kookana RS et al. (2014) Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J Agric Food Chem 62:4227–4240

    Article  CAS  Google Scholar 

  • Koziol FS, Semtner PJ (1984) Extent of resistance to organophosphorus insecticides in field populations of the green peach aphid (Homoptera: Aphididae) infesting flue-cured tobacco in Virginia. J Econ Entomol 77:1–3

    Article  CAS  Google Scholar 

  • Kumar K, Chapman RB (1984) Sublethal effects of insecticides on the diamondback moth Plutella xylostella (L.). Pestic Sci 15:344–352

    Article  CAS  Google Scholar 

  • Lade BD, Gogle DP (2019) Nano-biopesticides: Synthesis and applications in plant safety. In: Nanobiotechnology applications in plant protection. Springer International Publishing, p 169–189

  • Lee C-Y (2000) Sublethal effects of insecticides on longevity, fecundity and behaviour of insect pests: a review. J Biosci 11:107–112

    Google Scholar 

  • Liang P, Tian Y-A, Biondi A, Desneux N, Gao X-W (2012) Short-term and transgenerational effects of the neonicotinoid nitenpyram on susceptibility to insecticides in two whitefly species. Ecotoxicology 21:1889–1898

    Article  CAS  Google Scholar 

  • Loha KM, Shakil NA, Kumar J, Singh MK, Srivastava C (2012) Bio-efficacy evaluation of nanoformulations of β-cyfluthrin against Callosobruchus maculatus (Coleoptera: Bruchidae). J Environ Sci Health B 47:687–691

    Article  CAS  Google Scholar 

  • Lu YH, Wu KM, Jiang YY, Guo YY, Desneux N (2012) Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 487:362–365

    Article  CAS  Google Scholar 

  • Maroofpour N, Hejazi MJ, Hamishehkar H, Iranipour S (2019) Relative toxicity and residual activity of nanocapsules and commercial formulations of pirimicarb and pymetrozine against Myzus persicae (Hemiptera: Aphididae). J Econ Entomol 112:2670–2675

    Article  CAS  Google Scholar 

  • Meissle M, Zünd J, Waldburger M, Romeis J (2014) Development of Chrysoperla carnea (Stephens)(Neuroptera: Chrysopidae) on pollen from Bt-transgenic and conventional maize. Scientific reports 4:1–9

    Article  Google Scholar 

  • Memarizadeh N, Ghadamyari M, Adeli M, Talebi K (2014) Preparation, characterization and efficiency of nanoencapsulated imidacloprid under laboratory conditions. Ecotoxicol Environ Saf 107:77–83

    Article  CAS  Google Scholar 

  • Mohammed AAH, Desneux N, Fan YJ, Han P, Ali A, Song DL, Gao XW (2018) Impact of imidacloprid and natural enemies on cereal aphids: integration or ecosystem service disruption? Entomol Gen 37:47–61

    Article  Google Scholar 

  • Moores GD, Gao X, Denholm I, Devonshire AL (1996) Characterisation of insensitive acetylcholinesterase in insecticide-resistant cotton aphids, Aphis gossypiiglover (homoptera: Aphididae). Pestic Biochem Physiol 56:102–110

    Article  CAS  Google Scholar 

  • Morfin N, Goodwin PH, Hunt GJ, Guzman-Novoa E (2019) Effects of sublethal doses of clothianidin and/or V. destructor on honey bee (Apis mellifera) self-grooming behavior and associated gene expression. Sci Rep 9:1–10

    Article  CAS  Google Scholar 

  • Papachristos DP, Milonas PG (2008) Adverse effects of soil applied insecticides on the predatory coccinellid Hippodamia undecimnotata (Coleoptera: Coccinellidae). Biol Control 47:77–81

    Article  CAS  Google Scholar 

  • Pereira AJ, Cardoso IM, Araújo HD, Santana FC, Carneiro AP, Coelho SP, Pereira FJ (2019) Control of Brevicoryne brassicae (Hemiptera: Aphididae) with extracts of Agave americana var. Marginata Trel. in Brassica oleracea crops. Ann Appl Biol 174:14–19

    Article  Google Scholar 

  • Ragaei M, Sabry A-KH (2014) Nanotechnology for insect pest control. Int J Sci Environ Technol 3:528–545

    Google Scholar 

  • Ricupero M, Desneux N, Zappalà L, Biondi A (2020) Target and non-target impact of systemic insecticides on a polyphagous aphid pest and its parasitoid. Chemosphere 247:125728

    Article  CAS  Google Scholar 

  • Robertson JL, Savin NE, Russell RM, Preisler HK (2007) Bioassays with arthropods. CRC Press, New York

  • SAS (2008) SAS/STAT® 9.2 user’s guide. SAS Institute Inc Cary, NC, USA

  • Sasson Y, Levy-Ruso G, Toledano O, Ishaaya I (2007) Nanosuspensions: emerging novel agrochemical formulations. In: Insecticides design using advanced technologies. Springer-Verlag Berlin Heidelberg, p 1–39

  • Sciortino M, Scurria A, Lino C, Pagliaro M, D’Agostino F, Tortorici S, Ricupero M, Biondi A, Zappalà L, Ciriminna R (2021) Silica-Microencapsulated orange oil for sustainable pest control. Adv Sustain Syst. https://doi.org/10.1002/adsu.202000280

  • Shah FM, Razaq M, Ali Q, Ali A, Shad SA, Aslam M, Hardy ICW (2020) Action threshold development in cabbage pest management using synthetic and botanical insecticides. Entomol Gen 40:157–172

    Article  Google Scholar 

  • Shahzad K, Manzoor F (2019) Nanoformulations and their mode of action in insects: a review of biological interactions. Drug Chem Toxicol 44:1–11

    Article  Google Scholar 

  • Ullah F, Gul H, Desneux N, Gao X, Song D (2019a) Imidacloprid-induced hormesis effects on demographic traits of the melon aphid, Aphis gossypii. Entomol Gen 39:325–337

    Article  Google Scholar 

  • Ullah F, Gul H, Desneux N, Tariq K, Ali A, Gao X, Song D (2019c) Clothianidin-induced sublethal effects and expression changes of vitellogenin and ecdysone receptors genes in the melon aphid, Aphis gossypii. Entomol Gen 39:137–149

    Article  Google Scholar 

  • Ullah F, Gul H, Desneux N, Qu Y, Xiao X, Khattak AM, Gao X, Song D (2019b) Acetamiprid-induced hormetic effects and vitellogenin gene (Vg) expression in the melon aphid, Aphis gossypii. Entomol Gen 39:259–270

    Article  Google Scholar 

  • Weisenburger DD (1993) Human health-effects of agrichemicals use. Hum Pathol 24:571–576

    Article  CAS  Google Scholar 

  • Xiao TY, Desneux N, Han P, Gao X (2015) Assessment of sublethal and transgenerational effects of pirimicarb on the wheat aphids Rhopalosiphum padi and Sitobion avenae. PLoS ONE 10:e0128936

    Article  Google Scholar 

  • Yao F, Zheng Y, Zhao J, Desneux N, Hea YX, Wenga QY (2015) Lethal and sublethal effects of thiamethoxam on the whitefly predator Serangium japonicum (Coleoptera: Coccinellidae) through different exposure routes. Chemosphere 128:49–55

    Article  CAS  Google Scholar 

  • Zhang Y, Guo L, Atlihan R, Chi H, Chu D (2019) Demographic analysis of progeny fitness and timing of resurgence of Laodelphax striatellus after insecticides exposure. Entomol Gen 39:221–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

MJH, HH and SI conceived and designed the experiments. NM and MM performed the experiments. NM and KH established and analyzed the bioassay data and life table. NM and MM writing-original draft of manuscript. KH, AB and ND writing-review and editing the manuscript.

Corresponding author

Correspondence to Nariman Maroofpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Consent to publish

The participants have consented to the submission of the case report to the journal.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maroofpour, N., Mousavi, M., Hejazi, M.J. et al. Comparative selectivity of nano and commercial formulations of pirimicarb on a target pest, Brevicoryne brassicae, and its predator Chrysoperla carnea. Ecotoxicology 30, 361–372 (2021). https://doi.org/10.1007/s10646-021-02349-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-021-02349-x

Keywords

Navigation