Skip to main content
Log in

Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators

  • Plant-borne compounds and nanoparticles: challenges for medicine, parasitology and entomology
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Awmack CS, Leather SR (2007) Growth and development. In van Emden HF, Harrington R (eds) Aphids as crop pests. CAB International, pp 135–151

  • Benelli M, Leather SR, Francati S, Marchetti E, Dindo ML (2015) Effect of two temperatures on biological traits and susceptibility to a pyrethroid insecticide in an exotic and native coccinellid species. Bull Insect 68:23–29

    Google Scholar 

  • Blackman RL, Eastop VF (2000) Aphids on the world’s crops. An identification and information guide, Second edn. John Wiley & Sons, Chinchester

    Google Scholar 

  • Bonato O, Couton L, Fargues J (2006) Feeding preference of Macrolophus caliginosus (Heteroptera: Miridae) on Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). J Econ Entomol 99:1143–1151

    Article  Google Scholar 

  • Cho JR, Hong KJ, Yoo JK, Bang JR, Lee JO (1997) Comparative toxicity of selected insecticides to Aphis citricola, Myzus malisuctus (Homoptera: Aphididae), and the predator Harmonia axyridis (Coleoptera: Coccinellidae). J Econ Entomol 90:11–14

    Article  CAS  Google Scholar 

  • Cho JR, Kim J, Kim HS, Yoo JK (2002) Some biochemical evidence on the selective insecticide toxicity between the two aphids, Aphis citricola and Myzus malisuctus (Homoptera: Aphididae), and their predator, Harmonia axyridis (Coleoptera: Coccinellidae). J Asia Pac Entomol 5:49–53

    Article  Google Scholar 

  • Das RK, Sarma SJ, Brar SK, Verma M (2014) Nanoformulation of insecticides—novel products. J Biofertil Biopestici 5(1):e120. doi:10.4172/2155-6202.1000e120

    Google Scholar 

  • de Almeida VR, Giongo JL, Bolzan LP, Côrrea MS, Fausto VP, dos Santos Alves CF, Lopes LQS, Boligon AA, Athayde ML, Moreira AP, Brandelli A, Raffin RP, Santos RCV, Brandelli A (2015) Antimicrobial activity of nanostructured Amazonian oils against Paenibacillus species and their toxicity on larvae and adult worker bees. J Asia Pac Entomol 18:205–210

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-M (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  Google Scholar 

  • Desneux N, Wajnberg W, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vasquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneza A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 83:197–215

    Article  Google Scholar 

  • Devonshire AL, Field LM, Foster SP, Moores GD, Williamson MS, Blackman RL (1998) The evolution of insecticide resistance in the peach-potato aphid, Myzus persicae. Phil Trans R Soc Lond B 353:1677–1684

    Article  CAS  Google Scholar 

  • Ghosh S, Bhowmick DN, Pratap AP (2010) Application of neem and Karanjia oils as natural pesticide microemulsion systems. Tens Surf Deterg 47:369–375

    Article  CAS  Google Scholar 

  • Ghosh V, Saranya S, Mukherjee A, Chandrasekaran N (2013) Cinnamon oil nanoemulsion formulation by ultrasonic emulsification: investigation of its bactericidal activity. J Nanosci Nanotechnol 13:114–122

    Article  CAS  Google Scholar 

  • Hitmi A, Coudret A, Barthomeuf C (2000) The production of pyrethrins by plant cell and tissue cultures of Chrysanthemum cinerariaefolium and Tagetes species. Crit Rev Biochem Mol 35:317–337

    Article  CAS  Google Scholar 

  • Hodek I, van Emden HF, Honěk A (2012) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell

  • IRAC (nd) database <http://www.irac-online.org/>

  • Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 51:45–66

    Article  CAS  Google Scholar 

  • Kah M, Beulke S, Tiede K, Hofmann T (2013) Nanopesticides: state of knowledge, environmental fate, and exposure modelling. Crit Rev Env Sci Tec 43:1823–1867

    Article  CAS  Google Scholar 

  • Kalaitzaki A, Papanikolaou NE, Karamaouna F, Dourtoglou V, Xenakis A, Papadimitriou V (2015) Biocompatible colloidal dispersions as potential formulations of natural pyrethrins: a structural and efficacy study. Langmuir 31(21):5722–5730. doi:10.1021/acs.langmuir.5b00246

    Article  CAS  Google Scholar 

  • Koul O, Walia S, Dhaliwal GS (2008) Essential oils as green pesticides: potential and constraints. Biopestic Int 4:63–84

    Google Scholar 

  • Kraiss H, Cullen EM (2008) Efficacy and nontarget effects of reduced-risk insecticides on Aphis glycines (Hemiptera: Aphididae) and its biological control agent Harmonia axyridis (Coleoptera: Coccinellidae). J Econ Entomol 101:391–398

    Article  CAS  Google Scholar 

  • Li J, Jongsma MA, Wang CY (2014) Comparative analysis of pyrethrin content by mass selection, family selection and polycross in pyrethrum [Tanacetum cinerariifolium (Trevir.) Sch.Bip.] populations. Ind Crop Prod 53:268–273

    Article  CAS  Google Scholar 

  • Maselou DA, Perdikis DC, Sabelis MW, Fantinou AA (2014) Use of plant resources by an omnivorous predator and the concequences for effective predation. Biol Control 79:92–100

    Article  Google Scholar 

  • Michaud JP (2012) Coccinellids in biological control. In Hodek I, van Emden HF, Honěk A (eds) Ecology and behaviour of the ladybird beetles (Coccinellidae). Wiley-Blackwell, pp 488–519

  • Mizell RF, Schiffhauer DE (1990) Effects of pesticides on pecan aphid predators Chrysoperla rufilabris (Neuroptera: Chrysopidae), Hippodamia convergens, Cycloneda sanguinea (L.), Olla v-nigrum (Coleoptera: Coccinellidae), and Aphelinus perpallidus (hymenoptera: Encyrtidae). J Econ Entomol 83:1806–1812

    Article  CAS  Google Scholar 

  • Mukhopadhyay SS (2014) Nanotechnology in agriculture: prospects and constraints. Nanotechnol Sci Appl 7:63–71

    Article  CAS  Google Scholar 

  • Obrycki JJ, Kring TJ (1998) Predaceous coccinellids in biological control. Annu Rev Entomol 43:295–321

    Article  CAS  Google Scholar 

  • Papanikolaou NE, Milonas PG (2016) Aphidophagous ladybird beetles as biological control agents. In Travlos, IS, Bilalis D, Chachalis D (eds) Weed and Pest Control: Molecular Biology, Practices and Environmental Impact. Nova Science Publishers Inc, pp 143–156

  • Perdikis DC, Lykouressis DP (2004) Myzus persicae (Homoptera: Aphididae) as a suitable prey for Macrolophus pygmaeus (Hemiptera: Miridae) population increase on pepper plant. Environ Entomol 33:499–505

    Article  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    Article  CAS  Google Scholar 

  • Sarker DK (2005) Engineering of nanoemulsions for drug delivery. Curr Drug Deliv 2:297–310

    Article  CAS  Google Scholar 

  • Schmuck R, Candolfi MP, Kleiner R, Mead-Briggs M, Moll M, Kemmeter F, Jans D, Waltersdorfer A, Wilhelmy H (2000) A laboratory test system for assessing effects of plant protection products on the plant dwelling insect Coccinella septempunctata L. (Coleoptera: Coccinellidae). In Candolfi MP, Blumel S, Forster R (eds.), Guidelines to evaluate side-effects of plant protection products to non-target arthropods. IOBC, BART and EPPO Joint Initiative, pp. 45–56

  • Song S, Liu X, Jiang J, Qian Y, Zhang N, Wu Q (2009) Stability of triazophos in self-nanoemulsifying pesticide delivery system. Colloids Surf A Physicochem Eng Asp 350:57–62

    Article  CAS  Google Scholar 

  • Wang L, Li X, Zhang G, Dong J, Eastoe J (2007) Oil-in-water nanoemulsions for pesticide formulations. J. Colloid Interface Sci 314:230–235

    Article  CAS  Google Scholar 

  • Xu J, Fan QJ, Yin ZQ et al (2010) The preparation of neem oil microemulsion (Azadirachta indica) and the comparison of acaricidal time between neem oil microemulsion and other formulations in vitro. Vet Parasitol 169:399–403

    Article  CAS  Google Scholar 

  • Zappalá L, Biondi A, Alma A et al (2013) Natural enemies of the south American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the Greek Secretary of Research and Technology within the frame of the common research project “Cooperation,” 09-ΣΥΝ-42-699. Authors would like to thank Maria Samara (Laboratory of Efficacy Evaluation of Pesticides, Benaki Phytopathological Institute) for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios P. Papachristos.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papanikolaou, N.E., Kalaitzaki, A., Karamaouna, F. et al. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators. Environ Sci Pollut Res 25, 10243–10249 (2018). https://doi.org/10.1007/s11356-017-8596-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8596-2

Keywords

Navigation