, Volume 26, Issue 4, pp 521–533 | Cite as

Assessment of the environmental impacts of ocean acidification (OA) and carbon capture and storage (CCS) leaks using the amphipod Hyale youngi

  • T. A. Goulding
  • M. R. De Orte
  • D. Szalaj
  • M. D. Basallote
  • T. A. DelValls
  • A. Cesar


This study aims to ascertain the effects of CO2 induced water acidification and leaks from Carbon Capture and Storage activities on the South American amphipod Hyale youngi. A 10-day acute toxicity test was performed using sediments from two sites located inside the Santos Estuarine System. They were subjected to five pH treatments (8.1, 7.6, 7.0, 6.5, and 6.0). Metals (Cd, Cu, Cr, Pb, Ni and Zn) and the metalloid As were analyzed to determine the influence of their acidification-related mobility on the amphipods mortality. The results showed that mortality becomes significant when compared to control in pH 6.5 in the Canal de Piaçaguera sediment (contaminated) and at pH 6.0 in Ilha das Palmas sediment (reference).


Carbon dioxide capture and storage (CCS) Ocean acidification (OA) Climate change Metal mobilization Amphipod Hyale youngi 



The work was funded by the Brazilian Government as the part of the project: CAPES PVE 126/2012. Additionally, it has been partially supported by Grant CTM2012-36476-C02-01-02 funded by Spanish Ministry of Economy and Competitiveness. The first author thanks the Erasmus Mundus Programme for the Master Fellowship. De Orte thanks FAPESP for the postdoctoral fellowship granted under process 2014/ 22273-1. Cesar, A. thanks the Brazilian National Council for Scientific and Technological Development (CNPq PQ# 305869/2013-2) for the productivity fellowships awarded. MD Basallote thanks CAPES Foundation for the Postdoctoral Fellowship granted under process PVE #126/2012. T. A. DelValls thanks the Spanish Ministry of Education for the mobility grant for researchers and Professors ‘PRX16/00074’. Also thanks to Profs. Ionan Marigomez and Manuel Soto for their help in improving the quality of the final version of the manuscript. Moreover we are grateful to the fishing club in Santos for sampling permission and UNISANTA ecotoxicology laboratory group for their logistical support.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Abessa DM, Carr RS, Rachid BR, Sousa EC, Hortelani MA, Sarkis JE (2005) Influence of a Brazilian sewage outfall on the toxicity and contamination of adjacent sediments. Mar Pollut Bull 50:875–885. doi: 10.1016/j.marpolbul.2005.02.034 CrossRefGoogle Scholar
  2. Albright R, Bland C, Gillette P, Serafy JE, Langdon C, Capo TR (2012) Juvenile growth of the tropical sea urchin Lytechinus variegatus exposed to near-future ocean acidification scenarios. J Exp Mar Bio Ecol 426:12–17. doi: 10.1016/j.jembe.2012.05.017 CrossRefGoogle Scholar
  3. Allen HE, Hansen DJ (1996) The importance of trace metal speciation to water quality criteria. Water Environ Res 68:42–54CrossRefGoogle Scholar
  4. Auerbach DI, Caulfield JA, Adams EE, Herzog HJ (1997) Impacts of ocean CO2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ Model Assess 2:333–343CrossRefGoogle Scholar
  5. Barry JP, Buck KR, Lovera C, Brewer PG, Seibel BA, Drazen JC, Tamburri MN, Whalin PJ, Kuhnz L, Pane EF (2013) The response of abyssal organisms to low pH conditions during a series of CO2-release experiments simulating deep-sea carbon sequestration. Deep Sea Res Part II: Topical Studies in Oceanography 92:249–260. doi: 10.1016/j.dsr2.2013.03.037 CrossRefGoogle Scholar
  6. Basallote MD, Rodriguez-Romero A, Blasco J, DelValls TA, Riba I (2012) Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage. Environ Sci Poll Res 19:2550–2560. doi: 10.1007/s11356-012-0899-8 CrossRefGoogle Scholar
  7. Basallote MD, De Orte MR, DelValls TA, Riba I (2014) Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test. Environ Sci Technol 48:8864–8872. doi: 10.1021/es5015373 CrossRefGoogle Scholar
  8. Blackford J, Bull JM, Cevatoglu M, Connelly D, Hauton C, James RH, Lichtschlag A, Stahl H, Widdicombe S, Wright IC (2015) Marine baseline and monitoring strategies for carbon dioxide capture and storage (CCS). Int J Greenhouse Gas Control 38:221–229. doi: 10.1016/j.ijggc.2014.10.004 CrossRefGoogle Scholar
  9. Boyd E, Boykoff M, Newell P (2008) The “new” carbon economy: what’s new? Antipode 43:601–611. doi: 10.1111/j.1467-8330.2011.00882.x CrossRefGoogle Scholar
  10. Brown MT, Depledge MH (1998) Determinants of trace metal concentrations in marine organisms. Metal Metab Aqua Environ 1998:185–217. Springer USCrossRefGoogle Scholar
  11. Byrne R_H, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163–181CrossRefGoogle Scholar
  12. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:C09S04CrossRefGoogle Scholar
  13. Calmano WJ, Hong, Förstner U (1993) Binding and mobilization of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Technol 28:223–235Google Scholar
  14. Carr RS, Long ER, Windom HL, Chapman DC, Thursby G, Sloane GM, Wolf DA (1996) Sediment quality assessment studies of Tampa Bay, Florida. Environ Toxicol Chem 15:1218–1231CrossRefGoogle Scholar
  15. Cesar A, Pereira CDS, Santos A, Abessa D, Fernandez N, Choueri RB (2006) Ecotoxicological assessment of sediments from the Santos and São Vicente estuarine system-Brazil. Braz J Oceanography 54:55–63. doi: 10.1590/s1679-87592006000100005 CrossRefGoogle Scholar
  16. Cesar A, Choueri RB, Riba I, Morales-Caselles C, Pereira CDS, Santos A (2007) Comparative sediment quality assessment in different littoral ecosystems from Spain (Gulf of Cadiz) and Brazil (Santos and São Vicente estuarine system). Environ Int 33:429–435. doi: 10.1016/j.envint.2006.11.007 CrossRefGoogle Scholar
  17. Choueri R, Cesar A, Abessa DMdS, Torres R, Morais R, Riba I, Pereira CDS, Nascimento M, Mozeto A, DelValls T (2009) Development of site-specific sediment quality guidelines for North and South Atlantic littoral zones: comparison against national and international sediment quality benchmarks. J Hazard Mater 170:320–331. doi: 10.1016/j.jhazmat.2009.04.093 CrossRefGoogle Scholar
  18. CONAMA (2012) Brazilian National Council for the Environment (CONAMA) guidelines for dredged sediment, resolution N 454 of the 01 November 2012. Establishment of directory and reference procedures for the management of dredged sediment in waters under national jusrisdiction. Dated 01-11-2012. DOU publication 08-11-2012 section 1 pg 66Google Scholar
  19. Cvijanovic I, Caldeira K (2015) Atmospheric impacts of sea ice decline in CO2 induced global warming. Climate Dynamics 44:1173–1186. doi: 10.1007/s00382-015-2489-1 CrossRefGoogle Scholar
  20. De Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, DelValls TA (2014a) Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Sci Total Environ 470-471:356–363CrossRefGoogle Scholar
  21. De Orte MR, Lombardi AT, Sarmiento AM, Basallote MD, Romero AR, Riba I et al. (2014b) Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Mar Environ Res 96:136–144. doi: 10.1016/j.marenvres.2013.10.003 CrossRefGoogle Scholar
  22. Del Valls TA, Forja JM, Gómez-Parra A (1998) Integrated assessment of sediment quality in two littoral ecosystems of the gulf of Cádiz, Spain. Environ Toxicol Chem 17:1073–1084. doi: 10.1002/etc.5620170613 CrossRefGoogle Scholar
  23. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743. doi: 10.1016/0198-0149(87)90021-5 CrossRefGoogle Scholar
  24. Dickson AG (1990) Standard potential of the reaction: AgCl(s) þ 1/2 H2(g) ¼ Ag(s) þ HCl(aq), and the standard acidity constant of the ion HSO_4 in synthetic seawater from 273.15 to 318.15 K. J. Chem Thermodyn 22:113–127. doi: 10.1016/0021-9614(90)90074-z CrossRefGoogle Scholar
  25. Doney SC, Fabry VJ, Feely RA, Feely JA (2008) Ocean acidification: the other CO2 problem. Marine Sci 1:169–192. doi: 10.1146/annurev.marine.010908.163834 CrossRefGoogle Scholar
  26. Duan Y, Guttman SI, Oris JT, Burton GA (2000) Genotype and toxicity relationships among Hyalella azteca: I. Acute exposure to metals or low pH. Environ Toxicol Chem 19:1414–1421. doi: 10.1897/1551-5028(2000)019 CrossRefGoogle Scholar
  27. Fabry VJ, McClintock JB, Mathis JT, Grebmeier JM (2009) Ocean acidification at high latitudes: the bellweather. Oceanography 22:160–171. doi: 10.5670/oceanog.2009.105 CrossRefGoogle Scholar
  28. Flemming B (2000) A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Continental Shelf Res 20:1125–1137. doi: 10.1016/s0278-4343(00)00015-7 CrossRefGoogle Scholar
  29. France RL, Stokes PM (1987) Life stage and population variation in resistance and tolerance of Hyalella azteca (Amphipoda) to low pH. Can J Fish Aquat Sci 44:1102–1111. doi: 10.1139/f87-133 CrossRefGoogle Scholar
  30. Frye E, Bao C, Li L, Blumsack S (2012) Environmental controls of cadmium desorption during CO2 leakage. Environ Sci Technol 46:4388–4395. doi: 10.1021/es3005199 CrossRefGoogle Scholar
  31. Gaufin AR (1973) Water quality requirements of aquatic in ects. EPA 660/3-73-004. United States Environmental protection agency, Corvallis Oregon. doi: 10.1002/hyp.10641
  32. Global CCS Institute (2015) The Global Status of CCS: 2015, Summary Report, Melbourne, Australia.Google Scholar
  33. Guerra-García JM, Baeza-Rojano E, Cabezas MP, Díaz-Pávon JJ, Pacios I, García-Gómez JC (2009) The amphipods Caprella penantis and Hyale schmidtii as biomonitors of trace metal contamination in intertidal ecosystems of Algeciras Bay, Southern Spain. Mar Pollut Bull 58:783–786. doi: 10.1016/j.marpolbul.2009.02.018 CrossRefGoogle Scholar
  34. Hargeby A, Petersen RC (1988) Effects of low pH and humus on the survivorship, growth and feeding of Gammarus pulex (L.) (Amphipoda). Freshw Biol 19:235–247. doi: 10.1111/j.1365-2427.1988.tb00345.x CrossRefGoogle Scholar
  35. Hauton C, Tyrrell T, Williams J (2009) The subtle effects of sea water acidification on the amphipod Gammarus locusta. Biogeosciences 6:1479–1489. doi: 10.5194/bg-6-1479-2009 CrossRefGoogle Scholar
  36. Hoback WW, Barnhart MC (1996) Lethal limits and sublethal effects of hypoxia on the amphipod Gammarus pseudolimnaeus. J N Am Benth Soc 15:117–126. doi: 10.2307/1467437 CrossRefGoogle Scholar
  37. King CK, Gale SA, Hyne RV, Stauber JL, Simpson SL, Hickey CW (2006) Sensitivities of Australian and New Zealand amphipods to copper and zinc in waters and metal-spiked sediments. Chemosphere 63:1466–1476. doi: 10.1016/j.chemosphere.2005.09.020 CrossRefGoogle Scholar
  38. Kurihara H, Ishimatsu A (2008) Effects of high CO2 seawater on the copepod (Acartia tsuensis) through all life stages and subsequent generations. Mar Pollut Bull 56:1086–1090. doi: 10.1016/j.marpolbul.2008.03.023 CrossRefGoogle Scholar
  39. Lau LC, Lee KT, Mohamed AR (2012) Global warming mitigation and renewable energy policy development from the Kyoto Protocol to the Copenhagen Accord—A comment. Renew Sustainable Energy Rev 16:5280–5284. doi: 10.1016/j.rser.2012.04.006 CrossRefGoogle Scholar
  40. Li Q, Wu. Z, Chu. B, Zhang N, Cai S, Fang J (2007) Heavy metals in coastal wetland sediments of the Perl River Estuary, China. Environ Poll 16:917–927Google Scholar
  41. Lilliestam J, Bielicki JM, Patt AG (2012) Comparing carbon capture and storage (CCS) with concentrating solar power (CSP): Potentials, costs, risks, and barriers. Energy policy 47:447. doi: 10.1016/j.enpol.2012.05.020 CrossRefGoogle Scholar
  42. Mathews JA (2008) How carbon credits could drive the emergence of renewable energies. Energy Policy 36:3633–3639. doi: 10.1016/j.enpol.2008.05.033 CrossRefGoogle Scholar
  43. Mayor DJ, Matthews C, Cook K, Zuur AF, Hay S (2007) CO2- induced acidification affects hatching success in Calanus finmarchicus. Mar Ecol Prog Ser 350:91–97. doi: 10.3354/meps07142 CrossRefGoogle Scholar
  44. McCulloch M, Trotter J, Montagna P, Falter J, Dunbar R, Freiwald A, Frosterra G, Correa ML, Maier C, Ruggederg A, Taviani M (2012) Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim Cosmochim Acta 87:21–34. doi: 10.1016/j.gca.2012.03.027 CrossRefGoogle Scholar
  45. McDonald MR, McClintock JB, Amsler CD, Rittschof D, Angus RA, Orihuela B, Lutostanski K (2009) Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Marine Ecology Progress Service 385:179–187. doi: 10.3354/meps08099 CrossRefGoogle Scholar
  46. Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  47. Metz B, Davidson O., de Conink H, Loos H & Meyer L (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  48. Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the south-west coast of Spain. Chemosphere 55:431–442. doi: 10.1016/j.chemosphere.2003.10.047 CrossRefGoogle Scholar
  49. Musko IB, Meinel W, Krause R, Barlas M (1990) The impact of Cd and different pH on the amphipod Gammarus fossarum Koch (Crustacea: Amphipoda). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology 96:11–16. doi: 10.1016/0742-8413(90)90036-9 CrossRefGoogle Scholar
  50. Neff JM (1997) Ecotoxicology of arsenic in the marine environment. Environ Toxicol Chem 16(5):917–927Google Scholar
  51. Nipper MG, Prósperi VA, Zamboni AJ (1993) Toxicity testing with coastal species of south-eastern Brazil. Echinoderm sperm and embryos. Environ Contam Toxicol 50:646–652. doi: 10.1007/bf00194657 CrossRefGoogle Scholar
  52. Okken PA, Swart RJ & Zwerver S (2012) Climate and energy: the feasibility of controlling CO2 emissions. Springer Science & Business Media. 10.1007/978-94-009-0485-9
  53. Pagenkopf GK (1983) Gill surface interaction model for trace-metal toxicity to fishes: role of complexation, pH, and water hardness. Environ Sci Technol 17:342–347. doi: 10.1021/es00112a007 CrossRefGoogle Scholar
  54. Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008-2009 global financial crisis. Nat Clim Chang 2:2–4. doi: 10.1038/nclimate1332 CrossRefGoogle Scholar
  55. Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Wilson C (2013) The challenge to keep global warming below 2 C. Nat Clim Chang 3:4–6. doi: 10.1038/nclimate1783 CrossRefGoogle Scholar
  56. Pierrot D, Lewis E & Wallace DWR (2006) MS Excel program developed for CO2 system calculations. ORNL/CDIAC-105a. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee doi: 10.3334/cdiac/otg.co2sys_xls_cdiac105a
  57. Prósperi VA, Nascimento IA (2008) Avaliação ecotoxicológica de ambientes marinhos e estuarinos. In: Zagatto PA, Bertoletti E (eds) Ecotoxicologia aquática:princípios e aplicações, 2nd edn. RIMA, São Carlos, p 269–292Google Scholar
  58. Pusceddu FH, Alegre GF, Pereira CDS, Cesar A (2007) Avaliação da toxicidade do sedimento do Complexo Estuarino de Santos empregando ouriços-do-mar Lytechinus variegatus (Echinoidea: Echinodermata).” J Braz Soc Ecotoxicol 2:3. doi: 10.5132/jbse.2007.03.005 CrossRefGoogle Scholar
  59. Raha S (2015) Ocean acidification: a serious threat to coral reef. Asian Journal of Multidisciplinary Studies 3(4):28–35Google Scholar
  60. Rainbow PS, White SL (1989) Comparative strategies of heavy metal accumulation by crustaceans: zinc, copper and cadmium in a decapod, an amphipod and a barnacle. Hydrobiologia 174:245–262. doi: 10.1007/bf00008164 CrossRefGoogle Scholar
  61. Rainbow PS (2002) Trace metal concentrations in aquatic invertebrates: why and so what? Environ Poll 120:497–507. doi: 10.1016/s0269-7491(02)00238-5 CrossRefGoogle Scholar
  62. Riba I, Delvalls TA, Forja JM, Gomez Parra A (2010) Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ Sci Poll Res 17:1519–1528. doi: 10.1007/s11356-010-0338-7 CrossRefGoogle Scholar
  63. Riebesell U, Tortell PD (2011) Effects of ocean acidification on pelagic organisms and ecosystems. In: Gattuso JP and Hanson L (eds) Ocean acidification, p 99–121Google Scholar
  64. Schubauer-Berigan MK, Dierkes JR, Monson P, Ankley GT (1993) pH-Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus. Environ Toxicol Chem 12:1261–1266CrossRefGoogle Scholar
  65. Sousa ECPM,D, Abessa MR, Gasparo, Zaroni LP (2007) Ecotoxicological assessment of sediments from the Port of Santos and the disposal sites of dredged material. Braz J Oceanogr 55:75–81. doi: 10.1590/s1679-87592007000200001 CrossRefGoogle Scholar
  66. Spillman CM, Heron SF, Jury MR, Anthony KR (2011) Climate change and carbon threats to coral reefs: national meteorological and ocean services as sentinels. Bulletin of the American Meteorological Society 92:1581–1586. doi: 10.1175/bams-d-11-00009.1 CrossRefGoogle Scholar
  67. Sprague JB (1963) Resistance of four freshwater crustaceans to lethal high temperature and low oxygen. J Fish Res Board Can 20:388–415. doi: 10.1139/f63-032 CrossRefGoogle Scholar
  68. Stephenson M, Mackie GL (1987) Lake acidification as a limiting factor in the distribution of the freshwater amphipod Hyalella azteca. Can J Fish Aquat Sci 43:288–292. doi: 10.1139/f86-037 CrossRefGoogle Scholar
  69. Szalaj D, De Orte M.R., Goulding TA, Medeiros ID, Del Valls TA, Cesar, A (2016) The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability. Environ Sci Pollut Res 1–17. doi: 10.1007/s11356-016-7863-y
  70. Taylor EJ, Rees EM, Pascoe D (1994) Mortality and a drift-related response of the freshwater amphipod Gammarus pulex (L.) exposed to natural sediments, acidification and copper. Aquatic Toxicology 29:83–101. doi: 10.1016/0166-445x(94)90050-7 CrossRefGoogle Scholar
  71. Temme A, Cornwell W, Cornelissen H & Aerts R. (2014) From the low past to the high future: Plant growth across CO2 levels. In EGU General Assembly Conference Abstracts Vol. 16, p. 11606Google Scholar
  72. Torres RJ, Cesar A, Pastor VA, Pereira CDS, Choueri RB, Cortez FS, Morais RD, Abessa DMS, Nascimento MRL, Morais CR, Fadini PS, Del Valls Casillas TA, Mozeto AA (2015) A critical comparison of different approaches to sediment- quality assessments in the santos estuarine system in Brazil. Arch Environ Contam Toxicol 68:132–147. doi: 10.1007/s00244-014-0099-2 CrossRefGoogle Scholar
  73. Torres RJ, Abessa D, dos santos FC, Maranho L, Davanso MB, do Nascimento MRL (2009) Effects of dredging operations on sediment quality: contaminant mobilization in dredged sediments from the Port of Santos, SP, Brazil. J Soils Sediments 9:420–432. doi: 10.1007/s11368-009-0121-x CrossRefGoogle Scholar
  74. Widdicombe S, Blackford JC, Spicer JI (2013) Assessing the environmental consequences of CO2 leakage from geological CCS: generating evidence to support environmental risk assessment. Mar Pollut Bull 73:399–401. doi: 10.1016/j.marpolbul.2013.05.044 CrossRefGoogle Scholar
  75. Yin Y, Impelitteri CA, You SJ, Allen HE (2002) The importance of organic matter distribution and extract soil: solution ratio on the desorption of heavy metals from soils. Sci Total Environ 287:107–119. doi: 10.1016/s0048-9697(01)01000-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • T. A. Goulding
    • 1
  • M. R. De Orte
    • 2
  • D. Szalaj
    • 3
  • M. D. Basallote
    • 2
  • T. A. DelValls
    • 1
  • A. Cesar
    • 2
  1. 1.Departamento de Química-Física, Facultad de Ciencias del Mar y AmbientalesUniversidad de CádizPuerto RealSpain
  2. 2.Departamento de Ciencias do Mar, Instituto do Mar, Campus Baixada SantistaUniversidade Federal de São PauloSantosBrazil
  3. 3.Faculdade de Ciências, Instituto Dom LuizUniversidade de LisboaCampo GrandePortugal

Personalised recommendations