Skip to main content

Advertisement

Log in

Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage

  • 15th International Symposium on Toxicity Assessment
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

CO2 leakages during carbon capture and storage in sub-seabed geological structures could produce potential impacts on the marine environment. To study lethal effects on marine organisms attributable to CO2 seawater acidification, a bubbling CO2 system was designed enabling a battery of different tests to be conducted, under laboratory conditions, employing various pH treatments (8.0, 7.5, 7.0, 6.5, 6.0, and 5.5). Assays were performed of three exposure routes (seawater, whole sediment, and sediment elutriate). Individuals of the clam (Ruditapes philippinarum) and early-life stages of the gilthead seabream, Sparus aurata, were exposed for 10 days and 72 h, respectively, to acidified clean seawater. S. aurata larvae were also exposed to acidified elutriate samples, and polychaete organisms of the specie Hediste diversicolor and clams R. philippinarum were also exposed for 10 days to estuarine whole sediment. In the fish larvae elutriate test, 100 % mortality was recorded at pH 6.0, after 48 h of exposure. Similar results were obtained in the clam sediment exposure test. In the other organisms, significant mortality (p < 0.05) was observed at pH values lower than 6.0. Very high lethal effects (calculating L[H+]50, defined as the H+ concentration that causes lethal effects in 50 % of the population exposed) were detected in association with the lowest pH treatment for all the species. The implication of these results is that a severe decrease of seawater pH would cause high mortality in marine organisms of several different kinds and life stages. The study addresses the potential risks incurred due to CO2 leakages in marine environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Annunziatellis A, Beaubien SE, Bigi S, Ciotoli G, Coltella M, Lombardi S (2008) Gas migration along fault systems and through the vadose zone in the Latera caldera (central Italy): Implications for CO2 geological storage. Int J Greenhouse Gas Control 2(3):353–372

    Article  CAS  Google Scholar 

  • Ardelan MV, Steinnes E, Lierhagen S, Linde SO (2009) Effects of experimental CO2 leakage on solubility and transport of seven trace metals in seawater and sediment. Sci Total Environ 407(24):6255–6266

    Article  CAS  Google Scholar 

  • Astm S (2007) Standard guidelines for conducting sediment toxicity tests with polychaetous annelids. ASTM International, West Conshohocken

    Google Scholar 

  • Auerbach DI, Caulfield JA, Adams EE, Herzog HJ (1997) Impacts of ocean CO2 disposal on marine life: I. A toxicological assessment integrating constant-concentration laboratory assay data with variable-concentration field exposure. Environ Model Assess 2(4):333–343

    Article  Google Scholar 

  • Beiras R (2002) Comparison of Methods to Obtain a Liquid Phase in Marine Sediment Toxicity Bioassays with Paracentrotus lividus Sea Urchin Embryos. Arch Environ Con Tox 42(1):23–28.

    Google Scholar 

  • Blackford JC, Gilbert FJ (2007) pH variability and CO2 induced acidification in the North Sea. J Marin Syst 64(1–4):229–241

    Article  Google Scholar 

  • Blackford J, Jones N, Proctor R, Holt J, Widdicombe S, Lowe D, Rees A (2009) An initial assessment of the potential environmental impact of CO2 escape from marine carbon capture and storage systems. Proc IME J Power Energ 223(3):269–280

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nat 425(6956):365

    Article  CAS  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110(C9):C09S04

    Article  Google Scholar 

  • Casado-Martínez MC, Blasco J, Del Valls TA, González-Castromil MA, Riba I (2006) Interlaboratory assessment of marine bioassays to evaluate the environmental quality of coastal sediments in Spain. V. Whole sediment toxicity test using juveniles of the bivalve Ruditapes philippinarum. Ejercicio interlaboratorio de bioensayos marinos para la evaluación de la calidad ambiental de sedimentos costeros V Ensayo de toxicidad sobre sedimento con juveniles (in Spanish). Cienc Mar 32:159–166

    Google Scholar 

  • CEDEX (1994) Spanish Action Levels for dredged material management. CEDEX, Madrid

    Google Scholar 

  • Choueri RB, Cesar A, Abessa DMS, Torres RJ, Morais RD, Riba I, Pereira CDS, Nascimento MRL, Mozeto AA, DelValls TA (2009) Development of site-specific sediment quality guidelines for North and South Atlantic littoral zones: comparison against national and international sediment quality benchmarks. J Hazard Mater 170(1):320–331

    Article  CAS  Google Scholar 

  • Dean HK (2008) The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev Biol Trop 56(suppl 4):11–38

    Google Scholar 

  • DelValls TA, Blasco J, Sarasquete MC, Forja JM, Gómez-Parra A (1998a) Evaluation of heavy metal sediment toxicity in littoral ecosystems using juveniles of the fish Sparus aurata. Ecotoxicol Environ Saf 41:157–167

    Article  CAS  Google Scholar 

  • DelValls TÁ, Forja JM, Gómez-Parra A (1998b) Integrative assessment of sediment quality in two littoral ecosystems from the Gulf of Cádiz. Spain Environ Toxicol Chem 17(6):1073–1084

    Article  CAS  Google Scholar 

  • Dickson AG (1990) Standard potential of the (AgCl(s) + 1/2 H2 (g) = Ag(s) + HCl(aq)) cell and the dissociation constant of bisulfate ion in synthetic sea water from 273.15 to 318.15 K. J Chem Therm 22:113–127

    Article  CAS  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media: corrigenda. Deep-Sea Res 36:983

    Google Scholar 

  • El-Rayis (1985) Re-assessment of the titration method for determination of organic carbon in recent sediments. Rapp Comm Int Mer Médit 29:45–47

    Google Scholar 

  • Fleeger JW, Carman KR, Weisenhorn PB, Sofranko H, Marshall T, Thistle D, Barry JP (2006) Simulated sequestration of anthropogenic carbon dioxide at a deep-sea site: effects on nematode abundance and biovolume. Deep-Sea Res Part A Oceanogr Res Pap 53(7):1135–1147

    Article  CAS  Google Scholar 

  • Gattuso JP, Lee K, Rost B, Schulz K (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso J-P (eds) Guide for best practices in ocean acidification research and data reporting. Publications Office of the European Union, Luxembourg, pp 41–52

    Google Scholar 

  • Gaudette HE, Flight WR, Toner L, Folger DW (1974) An inexpensive titration method for the determination of organic carbon in recent sediments. J Sediment Petrol 44(1):249–253

    CAS  Google Scholar 

  • Green MA, Jones ME, Boudreau CL, Moore RL, Westman BA (2004) Dissolution mortality of juvenile bivalves in coastal marine deposits. Limnol Oceanogr 49(3):727–734

    Article  Google Scholar 

  • Haedrich R (1996) Deep-water fishes: evolution and adaptation in the earth’s largest living spaces*. J Fish Biol 49:40–53

    Article  Google Scholar 

  • Hampel M, Blasco J (2002) Toxicity of Linear Alkylbenzene Sulfonate and One Long-Chain Degradation Intermediate, Sulfophenyl Carboxylic Acid on Early Life-Stages of Seabream (Sparus Aurata). Ecotox Environ Safe 51(1):53–59

    Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6(2):4573–4586

    Article  Google Scholar 

  • Hofmann GE, Todgham AE (2010) Living in the now: physiological mechanisms to tolerate a rapidly changing environment. Annu Rev Physiol 72:127–145

    Article  CAS  Google Scholar 

  • Ishimatsu A, Dissanayake A (2010) Life threatened in acidic coastal waters in coastal environmental and ecosystem issues of the East China Sea. In: Ishimatsu A, Lie HJ (eds) Nagasaki University Mayor Research Project: restoration of marine environment and resources in East Asia. Nagasaki University/TERRAPUB, Tokyo, pp 283–303

    Google Scholar 

  • Ishimatsu A, Kikkawa T, Hayashi M, Lee K-S, Kita J (2004) Effects of CO2 on marine fish: larvae and adults. J Oceanogr 60(4):731–741

    Article  CAS  Google Scholar 

  • ISO11466 (1995) Soil quality—extraction of trace elements soluble in aqua regia. International Organization for Standardization, Switzerland

    Google Scholar 

  • Kalman J (2009) Bioavailability, bioaccumulation and toxicity of metals in marine organisms. University of Cádiz, Cádiz

    Google Scholar 

  • Keating EH, Hakala JA, Viswanathan H, Capo R, Stewart B, Gardiner J, Guthrie G, William Carey J, Fessenden J (2011) The challenge of predicting groundwater quality impacts in a CO2 leakage scenario: results from field, laboratory, and modeling studies at a natural analog site in New Mexico, USA. Energy Procedia 4:3239–3245

    Article  CAS  Google Scholar 

  • Luoma SN, Davis JA (1983) Requirements for modeling trace metal partitioning in oxidized estuarine sediments. Mar Chem 12(2–3):159–181

    Article  CAS  Google Scholar 

  • McKim JM (1977) Evaluation of tests with early life stages of fish for predicting long-term toxicity. J Fish Res Board Can 34(8):1148–1154

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson C, Hawley J, Pytkowicz R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18(6):897–907

    Google Scholar 

  • Melzner F, Gutowska M, Langenbuch M, Dupont S, Lucassen M, Thorndyke MC, Bleich M, Pörtner HO (2009) Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosci (BG) 6:2313–2331

    Article  CAS  Google Scholar 

  • Melzner F, Stange P, Trübenbach K, Thomsen J, Casties I, Panknin U, Gorb SN, Gutowska MA (2011) Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS One 6(9):e24223

    Article  CAS  Google Scholar 

  • OECD (1992) Fish, early-life stage toxicity test. OECD guidelines for testing of chemicals 210. OECD, Paris

    Book  Google Scholar 

  • OECD (1998) Fish, short-term, toxicity test on embryo and sac-fry stages. OECD guidelines for testing of chemicals 212. OECD, Paris

    Book  Google Scholar 

  • Oliva M, Garrido C, Sales D, González de Canales ML (2008) Lindane toxicity on early life stages of gilthead seabream (Sparus aurata) with a note on its histopathological manifestations. Ecotox Environ Safe 25(1):94–102

    Google Scholar 

  • Parker L, Ross PM, O’Connor WA (2011) Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Mar Biol 158(3):689–697

    Article  Google Scholar 

  • Payan MC, Verbinnen B, Galan B, Coz A, Vandecasteele C, Viguri JR (2012) Potential influence of CO2 release from a carbon capture storage site on release of trace metals from marine sediment. Environ Pollut 162:29–39

    Article  CAS  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) CO2SYS Dos program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Department of Energy, Oak Ridge

    Google Scholar 

  • Pistevos JCA, Calosi P, Widdicombe S, Bishop JDD (2011) Will variation among genetic individuals influence species responses to global climate change? Oikos 120(5):675–689

    Article  Google Scholar 

  • Pörtner HO (2008) Ecosystem effects of ocean acidification in times of ocean warming: a physiologist’s view. Mar Ecol Prog Ser 373:203–217

    Article  Google Scholar 

  • Ramos-Gómez J (2011) Calidad del tejido biológico en organismos bentónicos afectados por vertidos marinos agudos y crónicos. University of Cádiz, Cádiz (in Spanish)

    Google Scholar 

  • Riba I, Casado-Martínez C, Forja JM, DelValls TÁ (2004a) Sediment quality in the Atlantic coast of Spain. Environ Toxicol Chem 23(2):271–282

    Article  CAS  Google Scholar 

  • Riba I, DelValls TÁ, Forja JM, Gómez-Parra A (2004b) The influence of pH and salinity on the toxicity of heavy metals in sediment to the estuarine clam Ruditapes philippinarum. Environ Toxicol Chem 23(5):1100–1107

    Article  CAS  Google Scholar 

  • Riba I, Garcia-Luque E, Blasco J, DelValls T (2003) Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chem Speciation Bioavailability 15(4):101–114

    Google Scholar 

  • Riba I, Kalman J, Vale C, Blasco J (2010) Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ Sci Pollut Res 17(9):1519–1528

    Article  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Publications Office of the European Union, Luxemburg, p 260

    Google Scholar 

  • Seibel BA, Walsh PJ (2001) Potential impacts of CO2 injection on deep-sea biota. Sci 294(5541):319

    Article  CAS  Google Scholar 

  • Sunday JM, Crim RN, Harley CDG, Hart MW (2011) Quantifying rates of evolutionary adaptation in response to ocean acidification. PLoS One 6(8):e22881

    Article  CAS  Google Scholar 

  • USEPA (2002) Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms, 5th edn. USEPA, Washington, DC

    Google Scholar 

  • Widdicombe S, Needham HR (2007) Impact of CO2-induced seawater acidification on the burrowing activity of Nereis virens and sediment nutrient flux. Mar Ecol Prog Ser 341:111–122

    Article  Google Scholar 

Download references

Acknowledgments

The work described was supported partially by grants from the Spanish Ministry of Science and Innovation (CTM2008-06344-C03-02/ TECNO, CTM2008-06344-C03-03/TECNO, and CTM2011-28437-C02-02) and by grant P08-556 RNM 3924 from the Regional Government of Andalusia (Junta de Andalucía). We thank the following for their contributions: M. De Orte for her valuable collaboration in the setup of the CO2 system and performance of the toxicity tests and the Marine Aquaculture Working Group (Marine and Environmental Science Faculty, University of Cádiz). MDB also thanks Prof. Dr. Jesús Forja for his personal clarifications. This is the CEIMAR journal publication 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. D. Basallote.

Additional information

Communicated by Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basallote, M.D., Rodríguez-Romero, A., Blasco, J. et al. Lethal effects on different marine organisms, associated with sediment–seawater acidification deriving from CO2 leakage. Environ Sci Pollut Res 19, 2550–2560 (2012). https://doi.org/10.1007/s11356-012-0899-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-012-0899-8

Keywords

Navigation