Skip to main content

Advertisement

Log in

Relationship between submerged aquatic vegetation, turbidity, and fish distribution in a large shallow fluvial lake

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Many freshwater ecosystems worldwide are threatened by increasing water turbidity and extensive submerged aquatic vegetation (SAV) loss, with potential consequences on aquatic communities. Such changes in water quality and habitat features affect the relative abundance of species in the community and/or the composition of ecological guilds altering the trophic network. Here, we estimated the relationship between fish species and both SAV abundance and water quality in Lake St. Pierre (Québec, Canada), a shallow fluvial lake of the St. Lawrence River. To explain the association between the fish community and environmental variables, we performed multiple linear regressions on fish abundance, species richness, and Shannon diversity calculated at 133 stations, along a gradient of turbidity, temperature, and SAV abundance. In addition, we estimated the relationship between dominant fish species abundance and environmental variables by using canonical correspondence analysis (CCA). Species richness and abundance were positively related to SAV. Turbidity was negatively related to fish abundance, but had an unexpected positive effect on diversity (Shannon and species richness). By quantifying the association between fish species and habitat features, this study contributes to a better understanding of mechanisms structuring fish communities in changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available upon request.

References

  • Barbier EB, Hacker SD, Kennedy C, Koch EW, Stier AC, Silliman BR (2011) The value of estuarine and coastal ecosystem services. Ecol Monogr 81:169–193

    Article  Google Scholar 

  • Barton K (2012) CRAN - Package MuMIn. R package version

  • Bejarano I, Appeldoorn RS (2013) Seawater turbidity and fish communities on coral reefs of Puerto Rico. Mar Ecol Prog Ser 474:217–226

    Article  Google Scholar 

  • Bettoli PW, Maceina MJ, Noble RL, Betsill RK (1992) Piscivory in largemouth bass as a function of aquatic vegetation abundance. N Am J Fish Manag 12:509–516

    Article  Google Scholar 

  • Bolduc P, Bertolo A, Hudon C, Pinel-Alloul B (2020) Submerged aquatic vegetation cover and complexity drive crustacean zooplankton community structure in a large fluvial lake: an in situ approach. J Great Lakes Res 46:767–779

    Article  Google Scholar 

  • Brinson MM, Malvárez AI (2002) Temperate freshwater wetlands: types, status, and threats. Environ Conserv 29:115–133

    Article  Google Scholar 

  • Brazner JC, Beals EW (1997) Patterns in fish assemblages from coastal wetland and beach habitats in Green Bay, Lake Michigan: a multivariate analysis of abiotic and biotic forcing factors. Can J Fish Aquat Sci 54:1743–1761

    Article  Google Scholar 

  • Bryan MD, Scarnecchia DL (1992) Species richness, composition, and abundance of fish larvae and juveniles inhabiting natural and developed shorelines of a glacial Iowa lake. Environ Biol Fish 35:329–341

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002a) Model selection and multimodel inference: a practical information-theoretic approach. Ecological modelling. Springer Science & Business Media

  • Burnham KP, Anderson DR (2002b) Formal inference from more than one model: multimodel inference (MMI). In Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag

  • Caires AM, Chandra S, Hayford BL, Wittmann ME (2013) Four decades of change: dramatic loss of zoobenthos in an oligotrophic lake exhibiting gradual eutrophication. Freshw Sci 32:692–705

    Article  Google Scholar 

  • Chow-Fraser P, Lougheed V, Le Thiec V, Crosbie B, Simser L, Lord J (1998) Long-term response of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Wetl Ecol Manag 6:19–42

    Article  Google Scholar 

  • Cyrus DP, Blaber JM (1987) The influence of turbidity on juvenile marine fishes in estuaries. part 1. field studies at Lake St. Lucia on the southeastern coast of Africa. J Exp Mar Biol Ecol 109:53–70

    Article  Google Scholar 

  • Dauphin D, Jobin B (2016) Changements de l’occupation du sol dans la plaine inondable du lac Saint-Pierre entre les années 1950 et 1997. Nat Can 140:42–52

    Google Scholar 

  • Farly L, Hudon C, Cattaneo A, Cabana G (2019) Seasonality of a floodplain subsidy to the fish community of a large temperate river. Ecosytems 22:1823–1837

    Article  CAS  Google Scholar 

  • Ferrell DJ, Bell JD (1991) Differences among assemblages of fish associated with Zostera capricorni and bare sand over a large spatial scale. Mar Ecol Prog Ser 72:15–24

    Article  Google Scholar 

  • Freitas C, Villegas-Ríos D, Moland E, Moland Olsen E (2021) Sea temperature effects on depth use and habitat selection in a marine fish community. J Anim Ecol 90:1787–1800

    Article  Google Scholar 

  • Frenette JJ, Arts MT, Morin J (2003) Spectral gradients of downwelling light in a fluvial lake (Lake Saint-Pierre, St-Lawrence River). Aquat Ecol 37:77–85

    Article  Google Scholar 

  • Frenette J, Massicotte P, Lapierre JF (2012) Colorful niches of phytoplankton shaped by the spatial connectivity in a large river ecosystem: a riverscape perspective. PLoS ONE 7(4):e35891

    Article  CAS  Google Scholar 

  • Gao X, Huete AR, Ni W, Miura T (2000) Optical-biophysical relationships of vegetation spectra without background contamination. Remote Sens Environ 74:609–620

    Article  Google Scholar 

  • García-Ruiz JM, Beguería S, Nadal-Romero E, González-Hidalgo JC, Lana-Renault N, Sanjuán Y (2015) A meta-analysis of soil erosion rates across the world. Geomorphology 239:160–173

    Article  Google Scholar 

  • Garvey JE, Stein RA, Thomas HM (1994) Assessing how fish predation and interspecific prey competition influence a crayfish assemblage. Ecology 2:532–547

    Article  Google Scholar 

  • Giacomazzo M, Bertolo A, Brodeur P, Massicotte P, Goyette JO, Magnan P (2020) Linking fisheries to land use: how anthropogenic inputs from the watershed shape fish habitat quality. Sci Total Environ 717:135377

    Article  CAS  Google Scholar 

  • Gray SM, Bieber FME, Mcdonnell LH, Chapman LJ, Mandrak NE (2014) Experimental evidence for species-specific response to turbidity in imperilled fishes. Aquat Conserv Mar Freshw Ecosyst 24:546–560

    Article  Google Scholar 

  • Grenouillet G, Pont D, Seip KL (2002) Abundance and species richness as a function of food resources and vegetation structure: juvenile fish assemblages in rivers. Ecography 25:641–650

    Article  Google Scholar 

  • Heck KL Jr, Orth RJ (1980) Seagrass habitats: the roles of habitat complexity, competition and predation in structuring associated fish and motile macroinvertebrate assemblages. In: Kennedy VS (ed) Estuarine perspectives. Academic Press, pp 449–464

    Chapter  Google Scholar 

  • Heck KL Jr, Able KW, Fahay MP, Roman CT (1989) Fishes and decapod crustaceans of Cape Cod eelgrass meadows: species composition, seasonal abundance patterns and comparison with unvegetated substrates. Estuaries 12:58–85

    Article  Google Scholar 

  • Hidding B, Bakker ES, Hootsmans MJM, Hilt S (2016) Synergy between shading and herbivory triggers macrophyte loss and regime shifts in aquatic systems. Oikos 125:1489–1495

    Article  Google Scholar 

  • Hilt S, Gross EM, Hupfer M, Morscheid H, Mählmann J, Melzer A, Poltz J, Sandrock S, Scharf EV, Schneider S, van de Weyer K (2006) Restoration of submerged vegetation in shallow eutrophic lakes – a guideline and state of the art in Germany. Limnologica 36:155–171

    Article  CAS  Google Scholar 

  • Hilt S, Alirangues Nuñez MM, Bakker ES, Blindow I, Davidson TA, Gillefalk M, Hansson LA, Janse JH, Janssen ABG, Jeppesen E, Kabus T, Kelly A, Köhler J, Lauridsen TL, Mooij WM, Noordhuis R, Phillips G, Rücker J, SchusterHH SM, Teurlincx S, van de Weyer K, van Donk E, Waterstraat A, Willby N, Sayer CD (2018) Response of submerged macrophyte communities to external and internal restoration measures in north temperate shallow lakes. Front Plant Sci 9:194

    Article  Google Scholar 

  • Hofmann N, Fischer P (2002) Temperature preferences and critical thermal limits of burbot: implications for habitat selection and ontogenetic habitat shift. Trans Am Fish Soc 131:1164–1172

    Article  Google Scholar 

  • Hӧӧk TO, Eagan NM, Webb PW (2001) Habitat and human influences on larval fish assemblages in northern Lake Huron coastal marsh bays. Wetlands 21:281–291

    Article  Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    Article  CAS  Google Scholar 

  • Hudon C (1997) Impact of water level fluctuations on St. Lawrence River aquatic vegetation. Can J Fish Aquat Sci 54:2853–2865

    Article  Google Scholar 

  • Hudon C, Carignan R (2008) Cumulative impacts of hydrology and human activities on water quality in the St. Lawrence River (Lake Saint-Pierre, Quebec, Canada). Can J Fish Aquat Sci 65:1165–1180

    Article  CAS  Google Scholar 

  • Hudon C, Armellin A, Gagnon P, Patoine A (2009) Variations in water temperatures and levels in the St. Lawrence River (Québec, Canada) and potential implications for three common fish species. Hydrobiologia 647:145–161

    Article  Google Scholar 

  • Hudon C, Cattaneo A, Tourville Poirier AM, Brodeur P, Dumont P, Mailhot Y, Amyot JP, Despatie SP, de Lafontaine Y (2012) Oligotrophication from wetland epuration alters the riverine trophic network and carrying capacity for fish. Aquat Sci 74:495–511

    Article  CAS  Google Scholar 

  • Hudon C, Jean M, Létourneau G (2018) Temporal (1970–2016) changes in human pressures and wetland response in the St. Lawrence River (Québec, Canada). Sci Total Environ 643:1137–1151

    Article  CAS  Google Scholar 

  • Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83:195–213

    Article  Google Scholar 

  • Jermacz L, Dzierżyńska A, Kakareko T, Poznańska M, Kobaka J (2015) The art of choice: predation risk changes interspecific competition between freshwater amphipods. Behav Ecol 26:656–664

    Article  Google Scholar 

  • Kelly DJ, Schallenberg M (2019) Assessing food web structure in relation to nutrient enrichment, macrophyte collapse and lake resilience in shallow lowland lakes. N Z J Mar Freshw Res 53:603–619

    Article  CAS  Google Scholar 

  • La Violette N et al (2002) Protocole d’échantillonnage terrain et laboratoire. Réseau de suivi ichtyologique du fleuve Saint-Laurent : lac Saint-Pierre 2002. Société de la faune et des parcs du Québec, Direction de la recherche sur la faune, Québec. 23 p + 31 annexes

  • La Violette N, Fournier D, Dumont P, Mailhot Y (2003) Caractérisation des communautés de poissons et développement d’un indice d’intégrité biotique pour le fleuve Saint-Laurent, 1995–1997. Faune et Parcs Québec, Direction de la recherche sur la faune, Québec

  • La Violette N, Brodeur P, Mailhot Y (2007) Protocole d’échantillonnage du Réseau de suivi ichtyologique du fleuve Saint-Laurent : lac Saint-Pierre 2007. Ministère des Ressources naturelles et de la Faune, Faune Québec, Direction de la recherche sur la faune et Direction générale de la Mauricie et du Centre-du-Québec, Québec. 35 p + 36 annexes

  • Laplante-Albert KA, Rodríguez MA, Magnan P (2010) Quantifying habitat-dependent mortality risk in lacustrine fishes by means of tethering trials and survival analyses. Environ Biol Fishes 87:263–273

    Article  Google Scholar 

  • Lazzari MA, Stone BZ (2006) Use of submerged aquatic vegetation as habitat by young-of-the-year epibenthic fishes in shallow Maine nearshore waters. Estuar Coast Shelf Sci 69:591–606

    Article  Google Scholar 

  • Lefcheck JS, Orth RJ, Dennison WC, Wilcox DJ, Murphy RR, Keisman J, Gurbisz C, Hannam M, Landry JB, Moore KA, Patrick CJ, Testa J, Weller DE, Batiuk RA (2018) Long-term nutrient reductions lead to the unprecedented recovery of a temperate coastal region. Proc Natl Acad Sci USA 115:3658–3662

    Article  Google Scholar 

  • Liu C, Kroeze C, Hoekstra AY, Gerbens-Leenes W (2012) Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic 18:42–49

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ, Bradbury RH, Cooke RG, Kay MC, Kidwell SM, Kirby MX, Peterson CH, Jackson JBC (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  CAS  Google Scholar 

  • Lougheed VL, Crosbie B, Chow-Fraser P (2001) Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin. Can J Fish Aquat Sci 58:1603–1612

    Article  Google Scholar 

  • Lubbers L, Boynton WR, Kemp WM (1990) Variations in structure of estuarine fish communities in relation to abundance of submersed vascular plants. Mar Ecol Prog Ser 65:1–14

    Article  Google Scholar 

  • Lunt J, Smee DL (2020) Turbidity alters estuarine biodiversity and species composition. ICES J Mar Sci 77:379–387

    Article  Google Scholar 

  • Massicotte P, GrattonD FJJ, Assani AA (2013) Spatial and temporal evolution of the St. Lawrence River spectral profile: a 25-year case study using Landsat 5 and 7 imagery. Remote Sens Environ 136:433–441

    Article  Google Scholar 

  • Massicotte P, Bertolo A, Brodeur P, Hudon C, Mingelbier M, Magnan P (2015) Influence of the aquatic vegetation landscape on larval fish abundance. J Great Lakes Res 41:873–880

    Article  Google Scholar 

  • Mattila J, Chaplin G, Eilers MR, Heck KL Jr, O’Neal JP, Valentine JF (1999) Spatial and diurnal distribution of invertebrate and fish fauna of a Zostera marina bed and nearby unvegetated sediments in Damariscotta River, Maine (USA). J Sea Res 41:321–332

    Article  Google Scholar 

  • Menge BA, Sutherland JP (1976) Species diversity gradients: synthesis of the roles of predation, competition, and temporal heterogeneity. Am Nat 110:351–369

    Article  Google Scholar 

  • Miguel-Chinchilla L, Heasley E, Loiselle S, Thornhill I (2019) Local and landscape influences on turbidity in urban streams: a global approach using citizen scientists. Freshw Sci 38:303–320

    Article  Google Scholar 

  • Miller JW, Kocovsky PM, Wiegmann D, Miner JG (2018) Fish community responses to submerged aquatic vegetation in Maumee Bay, Western Lake Erie. N Am J Fish Manag 38:623–629

    Article  Google Scholar 

  • Midwood JD, Chow-Fraser P (2012) Changes in aquatic vegetation and fish communities following 5 years of sustained low water levels in coastal marshes of eastern Georgian Bay, Lake Huron. Glob Chang Biol 18:93–105

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, LegendreP, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2020) Package ‘vegan’, Community Ecology Package, R CRAN

  • Orth RJ, Heck KL Jr (1980) Structural components of Eelgrass (Zostera marina) meadows in the Lower Chesapeake Bay – Fishes. Estuaries 3:278–288

    Article  Google Scholar 

  • Orth RJ, Heck KL Jr, Montfrans J (1984) Faunal communities in seagrass beds: a review of the influence of plant structure and prey characteristics on predator-prey relationships. Estuaries 7:339–350

    Article  Google Scholar 

  • Orth RJ, Dennison WC, Lefcheck JS, Gurbisz C, Hannam M, Keisman J, Brooke Landry J, Moore KA, Murphy RR, Patrick CJ, Testa J, Weller DE, Wilcox DJ (2017) Submersed aquatic vegetation in Chesapeake Bay: sentinel species in a changing world. Bioscience 67:698–712

    Article  Google Scholar 

  • Paaijmans KP, Takken W, Githeko AK, Jacobs AFG (2008) The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int J Biometeorol 52:747–753

    Article  CAS  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Parris JD, Saila SB (1970) Interspecific competition, predation and species diversity. J Theor Biol 27:207–220

    Article  Google Scholar 

  • Paradis Y, Bertolo A, Mingelbier M, Brodeur P, Magnan P (2014) What controls distribution of larval and juvenile yellow perch? The role of habitat characteristics and spatial processes in a large, shallow lake. J Great Lakes Res 40:172–178

    Article  Google Scholar 

  • Pelicice FM, Thomaz SM, Agostinho AA (2008) Simple relationships to predict attributes of fish assemblages in patches of submerged macrophytes. Neotrop Ichthyol 6:543–550

    Article  Google Scholar 

  • Pianka ER (1994) Evolutionary ecology. HarperCollins College Publishers, New York, p 486

    Google Scholar 

  • Pratt TC, Smokorowski KE (2003) Fish habitat management implications of the summer habitat use by littoral fishes in a north temperate, mesotrophic lake. Can J Fish Aquat Sci 60:286–300

    Article  Google Scholar 

  • R Core Team (2019) R: a language and environment for statistical computing. https://www.R-project.org/

  • Radke RJ, Gaupisch A (2005) Effects of phytoplankton-induced turbidity on predation success of piscivorous Eurasian perch (Perca fluviatilis): possible implications for fish community structure in lakes. Naturwissenschaften 92:91–94

    Article  CAS  Google Scholar 

  • Randall RG, Minns CK, Cairns VW, Moore JE (1996) The relationship between an index of fish production and submerged macrophytes and other habitat features at three littoral areas in the Great Lakes. Can J Fish Aquat Sci 53:35–44

    Article  Google Scholar 

  • Randall RG, Brousseau CM, Hoyle JA (2012) Effect of aquatic macrophyte cover and fetch on spatial variability in the biomass and growth of littoral fishes in bays of Prince Edward County, Lake Ontario. Aquat Ecosyst Health Manag 15:385–396

    Article  Google Scholar 

  • Richardson J, Jowett IG (2002) Effects of sediment on fish communities in East Cape streams North Island, New Zealand. N Z J Mar Freshw Res 36(431):442

    Google Scholar 

  • Rodríguez MA, Lewis WM Jr (1997) Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecol Monogr 67:109–128

    Article  Google Scholar 

  • Ross ST (1991) Mechanisms structuring stream fish assemblages: are there lessons from introduced species? Environ Biol Fish 30:359–368

    Article  Google Scholar 

  • Rozas LP, Odum WE (1988) Occupation of submerged aquatic vegetation by fishes: testing the roles of food and refuge. Oecologia 77:101–106

    Article  Google Scholar 

  • Sand-Jensen K, Borum J (1991) Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquat Bot 41:137–175

    Article  Google Scholar 

  • Sass GG, Gille CM, Hinke JT, Kitchell JF (2006) Whole-lake influences of littoral structural complexity and prey body morphology on fish predator-prey interactions. Ecol Freshw Fish 15:301–308

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:275–279

    Article  CAS  Google Scholar 

  • Schwarzenbach R, Egli T, Hofstetter TB, von Gunten U, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Article  Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. Bull Fish Res Board Canada 184:1–966

    Google Scholar 

  • Shafer D, Bergstrom P (2010) An introduction to a special issue on large-scale submerged aquatic vegetation restoration research in the Chesapeake Bay: 2003–2008. Restor Ecol 18:481–489

    Article  Google Scholar 

  • Sheppard JN, James NC, Whitfield AK, Cowley PD (2011) What role do beds of submerged macrophytes play in structuring estuarine fish assemblages? Lessons from a warm-temperate South African estuary. Estuar Coast Shelf Sci 95:145–155

    Article  Google Scholar 

  • Simoneau M (2017) Qualité de l’eau des tributaires du lac Saint-Pierre: évolution temporelle 1979–2014 et portrait récent 2012–2014. Québec, ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques. Direction générale du suivi de l’état de l’environnement, ISBN 978–2–550–76229–4 (PDF), 54 p. + 13 ann. (http://www.mddelcc.gouv.qc.ca/eau/lac-st-pierre/qualite-eau-tributaires.pdf). Bibliothèque et Archives nationales du Québec

  • Sylvester JR (1972) Possible effects of thermal effluents on fish: a review. Environ Pollut 3:205–215

    Article  CAS  Google Scholar 

  • Taniguchi Y, Rahel FJ, Novinger DC, Gerow KJ (1998) Temperature mediation of competitive interactions among three fish species that replace each other along longitudinal stream gradients. Can J Fish Aquat Sci 55:1894–1901

    Article  Google Scholar 

  • ter Braak CJF, Verdonschot PFM (1995) Canonical correspondence analysis and related multivariate methods in aquatic ecology. Aquat Sci 57:255–289

    Article  Google Scholar 

  • Thorp AG, Jones RC, Kelso DP (1997) A comparison of water-column macroinvertebrate in beds of differing submersed aquatic vegetation in the tidal freshwater Potomac River. Estuaries 20:86–95

    Article  Google Scholar 

  • Trebitz AS, Brazner JC, Danz NP, Pearson MS, Peterson GS, Tanner DK, Taylor DL, West CW, Hollenhorst TP (2009a) Geographic, anthropogenic and habitat influences on Great Lakes coastal wetland fish assemblages. Can J Fish Aquat Sci 66:1328–1342

    Article  Google Scholar 

  • Trebitz AC, Brazner JC, Pearson MS, Peterson GS, Tanner DK, Taylor DL (2009b) Patterns in habitat and fish assemblages within Great Lakes coastal wetlands and implications for sampling design. Can J Fish Aquat Sci 66:1343–1354

    Article  Google Scholar 

  • Trumpickas J, Shuter BJ, Minns CK (2009) Forecasting impacts of climate change on Great Lakes surface water temperatures. J Great Lakes Res 35:454–463

    Article  Google Scholar 

  • Utne-Palm AC (2002) Visual feeding of fish in a turbid environment: physical and behavioural aspects. Mar Freshw Behav Physiol 35:111–128

    Article  Google Scholar 

  • Vis C, Cattaneo A, Hudon C (2008) Shift from chlorophytes to cyanobacteria in benthic macroalgae along a gradient of nitrate depletion. J Phycol 44:38–44

    Article  CAS  Google Scholar 

  • Waycott MC, Duarte M, Carruthers TJB, Orth RJ, Dennison WC, Olyarnik S, Calladine A, Fourqurean JW, Heck KL Jr, Hughes AR, Kendrick GA, Kenworthy WJ, Short FT, Williams SL (2009) Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc Natl Acad Sci USA 106:12377–12381

    Article  CAS  Google Scholar 

  • Weaver MJ, Magnuson JJ, Clayton MK (1997) Distribution of littoral fishes in structurally complex macrophytes. Can J Fish Aquat Sci 54:2277–2289

    Google Scholar 

  • Wenger AS, Johansen JL, Jones GP (2011) Suspended sediment impairs habitat choice and chemosensory discrimination in two coral reef fishes. Coral Reefs 30:879–887

    Article  Google Scholar 

  • Whatley MH, van Loon EE, van Dam H, Vonk JA, van der Geest HG, Admiraal W (2014) Macrophyte loss drives decadal change in benthic invertebrates in peatland drainage ditches. Freshw Biol 59:114–126

    Article  Google Scholar 

  • Wyda JC, Deegan LA, Hughes JE, Weaver MJ (2002) The response of fishes to submerged aquatic vegetation complexity in two ecoregions of the Mid-Atlantic Bight: Buzzard Bay and Chesapeake Bay. Estuaries 25:86–100

    Article  Google Scholar 

  • Zhang Y, Jeppesen E, Liu X, Qin B, Shi K, Zhou Y, Thomaz SM, Deng J (2017) Global loss of aquatic vegetation in lakes. Earth-Sci Rev 173:259–265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank R. Bacon who produced Fig. 1. We also wish to acknowledge the contribution of all biologists and wildlife technicians from MFFP for their involvement in field and laboratory work.

Funding

This work was supported by the Ministère des Forêts, de la Faune et des Parcs (MFFP) and by grants from the Natural Sciences and Engineering Research Council of Canada, the Research Centre for Watershed – Aquatic Ecosystem Interactions, University du Québec à Trois-Rivières, the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT; grant no ISI 186430) and the Groupe de Recherche Interuniversitaire en Limnologie (a FQRNT Strategic Network) to P. Magnan and A. Bertolo, and the Canada Research Chairs Program to P. Magnan.

Author information

Authors and Affiliations

Authors

Contributions

Giacomazzo M., Bertolo A., Magnan P., Brodeur P. conceived the idea. Brodeur P. provided data. Giacomazzo M. performed statistical analyses. All authors contributed critically to the manuscript and gave final approval for publication.

Corresponding author

Correspondence to Matteo Giacomazzo.

Ethics declarations

Ethics approval

The data used in this study come from fish sampling conducted by the Ministère des Forêts, de la Faune et des Parcs du Québec in 2002 and 2007. No approval of research ethics committees was required to accomplish these fish sampling in this Ministry. However, the authors confirm that fish handling was done according the usual ethical standards.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giacomazzo, M., Bertolo, A., Brodeur, P. et al. Relationship between submerged aquatic vegetation, turbidity, and fish distribution in a large shallow fluvial lake. Environ Biol Fish 106, 1–17 (2023). https://doi.org/10.1007/s10641-022-01359-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-022-01359-w

Keywords

Navigation