Skip to main content

Advertisement

Log in

A conceptual framework for the identification and characterization of lacustrine spawning habitats for native lake charr Salvelinus namaycush

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

Lake charr Salvelinus namaycush are endemic to the formerly glaciated regions of North America and spawn primarily in lakes, unlike most other Salmoninae. Spawning habitats for lake charr are thought to be characterized by relatively large substrate particle sizes which provide sufficient interstitial spaces for egg incubation, but little is known about the physical processes that create or maintain suitable habitats. We review the literature on lake charr spawning habitat and present a conceptual framework that examines the roles of physical variables in creating the appropriate conditions for egg incubation. A critical underlying assumption of this framework is that lake charr will select spawning habitats that provide suitable hypolentic flows for egg incubation. We suggest that the characterization of lakebed surface roughness, current patterns, substrate particle size, and groundwater flows at multiple spatial scales may yield significant insight into the physical mechanisms supporting lacustrine spawning habitats for lake charr and will be useful in creating predictive models of these habitats. This framework may also apply to other lake-spawning lithophilic fish species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison PA, Wilson CC (2010) Matching management to biological scale: connectivity among lacustrine brook trout populations. N Am J Fish Manag 30:1132–1142

    Article  Google Scholar 

  • Ala-aho P, Rossi PM, Kløve B (2013) Interaction of esker groundwater with headwater lakes and streams. J Hydrol 500:144–156

    Article  CAS  Google Scholar 

  • Anras MLB, Cooley PM, Bodaly RA, Anras L, Fudge RJP (1999) Movement and habitat use by lake whitefish during spawning in a boreal lake: integrating acoustic telemetry and geographic information systems. Trans Am Fish Soc 128:939–952

    Article  Google Scholar 

  • Arostegui MC, Quinn TP (2019) Reliance on lakes by salmon, trout and charr (Oncorhynchus, Salmo and Salvelinus): an evaluation of spawning habitats, rearing strategies and trophic polymorphisms. Fish Fish 20:775–784

    Google Scholar 

  • Aseltyne T, Rowe H, Fryar A (2006) Stable isotopic fingerprint of a hyporheic–hypolentic boundary in a reservoir. Hydrogeol J 14:1688–1695

    Article  CAS  Google Scholar 

  • Aylsworth JM, Shilts WW (1989) Bedforms of the Keewatin ice sheet, Canada. In: J. Menzies and J. rose, (Eds.), subglacial bedforms-drumlins, Rogen moraine and associated subglacial bedforms. Sediment Geol 62:407–428

    Article  Google Scholar 

  • Balon EK (1975) Reproductive guilds of fishes: a proposal and definition. J Fish Res Board Can 32:821–864

    Article  Google Scholar 

  • Barnes PW, Kempema EW, Reimnitz E, McCormick M (1994) The influence of ice on southern Lake Michigan coastal erosion. J Great Lakes Res 20:179–195

    Article  Google Scholar 

  • Baxter CV, Hauer FR (2000) Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus). Can J Fish Aquat Sci 57:1470–1481

    Article  Google Scholar 

  • Bean JR, Wilcox AC, Woessner WW, Muhlfeld CC (2015) Multiscale hydrogeomorphic influences on bull trout (Salvelinus confluentus) spawning habitat. Can J Fish Aquat Sci 72:514–526

    Article  Google Scholar 

  • Beechie T, Moir H, Pess G (2008) Hierarchical physical controls on salmonid spawning location and timing. In: Sear DA, DeVries P (eds) Salmon spawning habitat in rivers: physical controls, biological responses, and approaches to remediation. American Fisheries Society, Bethesda, pp 83–102

    Google Scholar 

  • Behnke RJ (1972) The systematics of salmonid fishes of recently glaciated lakes. J Fish Res Board Can 29:639–671

    Article  Google Scholar 

  • Behnke RJ (1980) A systematic review of the genus Salvelinus. In: Balon EK (ed) Charrs, salmonid fishes of the genus Salvelinus. Dr. W. Junk bv Publishers, The Hague, pp 441–481

    Google Scholar 

  • Beletsky D, Schwab DJ (2001) Modeling circulation and thermal structure in Lake Michigan: annual cycle and interannual variability. J Geophys Res 106:745–771

    Article  Google Scholar 

  • Bertilsson S, Burgin A, Carey CC, Fey SB, Grossart HP, Grubisic LM, Jones ID, Kirillin G, Lennon JT, Shade A, Smyth RL (2013) The under-ice microbiome of seasonally frozen lakes. Limnol Oceanogr 58:1998–2012

    Article  Google Scholar 

  • Binder TR, Farha SA, Thompson HT, Holbrook CM, Bergstedt RA, Riley SC, Bronte CR, He J, Krueger CC (2018) Fine-scale acoustic telemetry reveals unexpected lake trout, Salvelinus namaycush, spawning habitats in northern Lake Huron, North America. Ecol Freshw Fish 27:594–605. https://doi.org/10.1111/eff.12373

    Article  Google Scholar 

  • Binder TR, Thompson HT, Muir AM, Riley SC, Marsden JE, Krueger CC (2015) New insights into the spawning behavior of lake trout, Salvelinus namaycush, from a recovering population in the Laurentian Great Lakes. Env Biol Fishes 98:173–181

    Article  Google Scholar 

  • Binder TR, Riley SC, Holbrook CM, Hansen MJ, Bergstedt RA, Bronte CR, Krueger CC (2016) Spawning site fidelity of wild and hatchery lake trout, Salvelinus namaycush, in northern Lake Huron. Can J Fish Aquat Sci 73:18–34

    Article  Google Scholar 

  • Bjornn TC, Reiser DW (1991) Habitat requirements of salmonids in streams. Pp. 83–138 in Meehan, W. R. (ed.). Influences of forest and rangeland management on salmonid fishes and their habitats. Am Fish Soc Spec Publ 19, Bethesda, MD

  • Boano F, Harvey JW, Marion A, Packman AI, Revelli R, Ridolfi L, Wörman A (2014) Hyporheic flow and transport processes: mechanisms, models, and biogeochemical implications. Rev Geophys 52:603–679

    Article  Google Scholar 

  • Borwick J, Buttle J, Ridgway MS (2006) A topographic index approach for identifying groundwater habitat of young-of-year brook trout (Salvelinus fontinalis) in the land–lake ecotone. Can J Fish Aquat Sci 63:239–253

    Article  Google Scholar 

  • Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM (1998) The functional significance of the hyporheic zone in streams and rivers. Annu Rev Ecol Syst 29:59–81

    Article  Google Scholar 

  • Brabrand Å, Koestler AG, Borgstrøm R (2002) Lake spawning of brown trout related to groundwater influx. J Fish Biol 60:751–763

    Article  Google Scholar 

  • Briggs MA, Lautz LK, McKenzie JM, Gordon RP, Hare DK (2012) Using high-resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux. Water Resour Res 48:W02527

    Article  Google Scholar 

  • Bronte CR (1993) Evidence of spring spawning lake trout in Lake Superior. J Great Lakes Res 19:625–629

    Article  Google Scholar 

  • Bronte CR, Selgeby JH, Saylor JH, Miller GS, Foster NR (1995) Hatching, dispersal, and bathymetric distribution of age-0 wild lake trout at the Gull island shoal complex, lake superior. J Gt Lakes Res 21:233–245. https://doi.org/10.1016/S0380-1330(95)71096-6

    Article  Google Scholar 

  • Brunke M, Gonser T (1997) The ecological significance of exchange processes between rivers and groundwater. Freshw Biol 37:1–33

    Article  Google Scholar 

  • Buchinger TJ, Marsden JE, Binder TR, Huertas M, Bussy U, Li K, Johnson J, He J, Hanson J, Krueger CC, Li W, Johnson N (2017) Temporal constraints on the potential role of fry odors as cues of past reproductive success for spawning lake trout. Ecol Evol 7:10196–10206

    Article  PubMed  PubMed Central  Google Scholar 

  • Buffington JM, Tonina D (2009) Hyporheic exchange in mountain rivers II: effects of channel morphology on mechanics, scales, and rates of exchange. Geogr Compass 209:1038–1062

    Article  Google Scholar 

  • Buffington JM, Montgomery DR, Greenberg HM (2004) Basin-scale availability of salmonid spawning gravel as influenced by channel type and hydraulic roughness in mountain catchments. Can J Fish Aquat Sci 61:2085–2096

    Article  Google Scholar 

  • Bunte K, Abt SR (2001) Sampling surface and subsurface particle-size distributions in wadable gravel- and cobble-bed streams for analyses in sediment transport, hydraulics, and streambed monitoring. Gen. Tech. Rep. RMRS-GTR-74. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 428 p

  • Burger CV, Finn JE, Holland-Bartels L (1995) Pattern of shoreline spawning by sockeye salmon in a glacially turbid lake: evidence for subpopulation differentiation. Trans Am Fish Soc 124:1–15

    Article  Google Scholar 

  • Callaghan DT, Blanchfield PJ, Cott PA (2016) Lake trout (Salvelinus namaycush) spawning habitat in a northern lake: the role of wind and physical characteristics on habitat quality. J Great Lakes Res 42:299–307

    Article  Google Scholar 

  • Cardenas MB, Wilson JL (2006) The influence of ambient groundwater discharge on exchange zones induced by current–bedform interactions. J Hydrol 331:103–109

    Article  Google Scholar 

  • Cardenas MB, Wilson JL (2007) Exchange across a sediment-water interface with ambient groundwater discharge. J Hydrol 346:69–80

    Article  Google Scholar 

  • Cardenas MB, Zlotnik VA (2003) Three-dimensional model of modern channel bend deposits. Water Resour Res 39:1141

    Article  Google Scholar 

  • Carline RF (1980) Features of successful spawning site development for brook trout in Wisconsin ponds. Trans Am Fish Soc 109:453–457

    Article  Google Scholar 

  • Casselman JM (1995) Survival and development of lake trout eggs and fry in eastern Lake Ontario - in situ incubation, Yorkshire Bar, 1989–1993. J Great Lakes Res 21(Suppl. l):384–399

    Article  Google Scholar 

  • Chapman DW (1988) Critical review of variables used to define effects of fines in redds of large salmonids. Trans Am Fish Soc 117:1–21

    Article  Google Scholar 

  • Claramunt RM, Jonas JL, Fitzsimons JD, Marsden JE (2005) Influences of spawning habitat characteristics and interstitial predators on lake trout egg deposition and mortality. Trans Am Fish Soc 134:1048–1057

    Article  Google Scholar 

  • Clark PU, Walder JS (1994) Subglacial drainage, eskers, and deforming beds beneath the Laurentide and Eurasian ice sheets. Geol Soc Am Bull 106:304–314

    Article  Google Scholar 

  • Coberly CE, Horrall RM (1980) Fish spawning grounds in Wisconsin waters of the Great Lakes. University of Wisconsin Sea Grant Institute, Madison

    Google Scholar 

  • Coleman MJ, Hynes HBN (1970) The vertical distribution of the invertebrate fauna in the bed of a stream. Limnol Oceanogr 15:31–40

    Article  Google Scholar 

  • Collins JJ (1975) An emergent fry trap for lake-spawning salmonines and coregonines. Prog Fish–Cult 37:140–142

    Article  Google Scholar 

  • Couturier CY, Clarke L, Sutterlin AM (1986) Identification of spawning areas of two forms of Atlantic salmon (Salmo salar L.) inhabiting the same watershed. Fish Res 4:131–144

    Article  Google Scholar 

  • Cram JM, Torgerson CE, Klett RS, Pess GR, May D, Pearsons TN, Dittman AH (2017) Spatial variability of Chinook salmon spawning distribution. Trans Am Fish Soc 146:206–221

    Article  Google Scholar 

  • Crossman EJ (1995) Introduction of the lake trout (Salvelinus namaycush) in areas outside its native distribution: a review. J Great Lakes Res 21(Suppl. 1):17–29

    Article  Google Scholar 

  • Crowder DW, Diplas P (2002) Vorticity and circulation: spatial metrics for evaluating flow complexity in stream habitats. Can J Fish Aquat Sci 59:633–645

    Article  Google Scholar 

  • Curry RA, Devito KJ (1996) Hydrogeology of brook trout (Salvelinus fontinalis) spawning and incubation habitats: implications for forestry and land use development. Can J Fish Aquat Sci 26:767–772

    Google Scholar 

  • Curry RA, Noakes DLG (1995) Groundwater and the selection of spawning sites by brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 52:1733–1740

    Article  Google Scholar 

  • Davey C, Lapointe M (2007) Sedimentary links and the spatial organization of Atlantic salmon (Salmo salar) spawning habitat in a Canadian shield river. Geomorphology 83:82–96

    Article  Google Scholar 

  • Davis JA, Barmuta LA (1989) An ecologically useful classification of mean and near-bed flows in streams and rivers. Freshw Biol 21:271–282

    Article  Google Scholar 

  • DeRoche SE (1969) Observations on the spawning habits and early life of lake trout. Prog Fish-Culturist 31:109–113

    Article  Google Scholar 

  • Deroche SE, Bond LH (1957) The lake trout of cold stream pond, Enfield, Maine. Trans Am Fish Soc 85:257–270

    Article  Google Scholar 

  • DeVries P (1997) Riverine salmonid egg burial depths: review of published data and implications for scour studies. Can J Fish Aquat Sci 54:1685–1698

    Article  Google Scholar 

  • Dorr JA, O’Connor DV, Foster NR, Jude DJ (1981) Substrate conditions and abundance of lake trout eggs in a traditional spawning area in southeastern Lake Michigan. N Am J Fish Manag 1:165–172

    Article  Google Scholar 

  • Downes BJ, Lake PS, Schreiber ESG, Glaister A (1998) Habitat structure and regulation of local species diversity in a stony, upland stream. Ecol Monogr 68:237–257

    Article  Google Scholar 

  • Dunning JB, Danielson BJ, Pulliam HR (1992) Ecological processes that affect populations in complex landscapes. Oikos 65:169–175

    Article  Google Scholar 

  • Dustan P, Doherty O, Pardede S, Ferse SCA (2013) Digital Reef Rugosity Estimates Coral Reef Habitat Complexity. PLoS ONE 8(2):e57386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edsall TA, Kennedy GW (1995) Availability of lake trout reproductive habitat in the Great Lakes. J Great Lakes Res 21(Suppl. 1):290–301

    Article  Google Scholar 

  • Edsall TA, Poe TP, Nester RT, Brown CL (1989) Side-scan sonar mapping of lake trout spawning habitat in northern Lake Michigan. N Am J Fish Manag 9:269–279

    Article  Google Scholar 

  • Edsall TA, Brown CL, Kennedy GW, Poe TP (1992) Lake trout spawning habitat in the six fathom Bank-Yankee reef lake trout sanctuary, Lake Huron. J Great Lakes Res 18:70–90

    Article  Google Scholar 

  • Edsall TA, Holey ME, Manny BA, Kennedy GW (1995) An evaluation of lake trout reproductive habitat on clay banks reef, northwestern Lake Michigan. J Great Lakes Res 21(Suppl. 1):418–432

    Article  Google Scholar 

  • Ellrott BJ, Marsden JE (2004) Lake trout reproduction in Lake Champlain. Trans Am Fish Soc 133:252–264

    Article  Google Scholar 

  • Elrod JH, Schneider CP (1987) Seasonal Bathythermal Distribution of Juvenile Lake Trout in Lake Ontario. J Gt Lakes Res 13:121–134. https://doi.org/10.1016/S0380-1330(87)71636-0

    Article  Google Scholar 

  • Erisman B, Heyman W, Kobara S, Ezer T, Pittman S, Aburto-Oropeza O, Nemeth RS (2017) Fish spawning aggregations: where well-placed management actions can yield big benefits for fisheries and conservation. Fish Fish 18:128–144

    Article  Google Scholar 

  • Eschmeyer PH (1955) The reproduction of lake trout in southern Lake Superior. Trans Am Fish Soc 84:47–74

    Article  Google Scholar 

  • Eshenroder RL, Bronte DR, Peck JW (1995) Comparison of lake trout egg survival at inshore and offshore and shallow-water and Deepwater sites in Lake Superior. J Great Lakes Res 21(Suppl. 1):313–322

    Article  Google Scholar 

  • Esteve M (2005) Observations of spawning behaviour in Salmoninae: Salmo, Oncorhynchus and Salvelinus. Rev Fish Biol Fish 15:1–21

    Article  Google Scholar 

  • Evans OF (1943) The origin of spits, bars, and related structures. J Geol 20:846–865

    Google Scholar 

  • Eyles N, Doughty M (2016) Glacially-streamlined hard and soft beds of the paleo-Ontario ice stream in Central Canada. Sediment Geol 338:51–71

    Article  Google Scholar 

  • Fabricius E (1950) Heterogeneous stimulus summation in the release of spawning activities in fish. Rep Inst Freshw Res Drottningholm 31:57–99

    Google Scholar 

  • Falke JA, Dunham JB, Jordan CE, McNyset KM, Reeves GH (2013) Spatial ecological processes and local factors predict the distribution and abundance of spawning by steelhead (Oncorhynchus mykiss) across a complex riverscape. PLoS ONE 8:e79232. https://doi.org/10.1371/journal.pone.0079232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farha SA (2018) Evaluation of lake trout habitat selection at Drummond Island spawning reefs. Master’s thesis. Michigan State University, Lansing

  • Fausch KD, Torgersen CE, Baxter CV, Li HW (2002) Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes. BioScience 52:483–498

    Article  Google Scholar 

  • Fee EJ, Hecky RE, Kasian SEM, Cruikshank DR (1996) Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian shield lakes. Limnol Oceanogr 41:912–920

    Article  CAS  Google Scholar 

  • Fer I, Lemmin U, Thorpe SA (2002) Observations of mixing near the sides of a deep lake in winter. Limnol Oceanogr 47:535–544

    Article  Google Scholar 

  • Finlay KP, Cyr H, Shuter BJ (2001) Spatial and temporal variability in water temperatures in the littoral zone of a multibasin lake. Can J Fish Aquat Sci 58:609–619

    Article  Google Scholar 

  • Fitzsimons JD (1995) Assessment of lake trout spawning habitat and egg deposition and survival in Lake Ontario. J Great Lakes Res 21(Suppl 1):337–347

    Article  Google Scholar 

  • Fitzsimons JD (1996) The significance of man-made structures for lake trout spawning in the Great Lakes: are they a viable alternative to natural reefs? Can J Fish Aquat Sci 53(Suppl.1):142–151

    Article  Google Scholar 

  • Fitzsimons JD, Marsden JE (2014) Relationship between lake trout spawning, embryonic survival, and currents: a case of bet hedging in the face of environmental stochasticity? J Great Lakes Res 40:92–101

    Article  Google Scholar 

  • Fitzsimons JD, Jonas JL, Claramunt RM, Williston B, Williston G, Marsden JE, Ellrott BJ, Honeyfield DC (2007) Influence of egg predation and physical disturbance on lake trout Salvelinus namaycush egg mortality and implications for life-history theory. J Fish Biol 71:1–16

    Article  Google Scholar 

  • Flavelle LS, Ridgway MS, Middel TA, McKinley RS (2002) Integration of acoustic telemetry and GIS to identify potential spawning areas for lake trout (Salvelinus namaycush). Hydrobiol 483:137–146

    Article  Google Scholar 

  • Forbes SA (1887) The lake as a microcosm. Bull Peoria Sci Ass 1887:77–87

    Google Scholar 

  • Forman RTT, Godron M (1986) Landscape ecology. John Wiley and Sons, New York

    Google Scholar 

  • Foster NR, Kennedy GW (1995) Patterns of egg deposition by lake trout and lake whitefish at Tawas artificial reef, Lake Huron. In: Munawar M, Edsall T, Leach J (eds) The Lake Huron ecosystem: ecology, fisheries, and management. SPB, Amsterdam, pp 191–206

    Google Scholar 

  • Fraser JM (1985) Shoal spawning of brook trout, Salvelinus fontinalis, in a Precambrian shield lake. Nat Can 112:163–174

    Google Scholar 

  • Frissell CA, Liss WJ, Warren CE, Hurley MD (1986) A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Env Manage 10:199–214

    Article  Google Scholar 

  • Frost W (1965) Breeding habits of Windermere charr, Salvelinus willughbii (Gűnther), and their bearing on speciation of these fish. Proc R Soc Lond Ser B 163:232–284

    Article  CAS  Google Scholar 

  • Geist DR (2000) Hyporheic discharge of river water into fall Chinook salmon (Oncorhynchus tshawytscha) spawning areas in the Hanford reach, Columbia River. Can J Fish Aquat Sci 57:1647–1656

    Article  Google Scholar 

  • Geist DR, Dauble DD (1998) Redd site selection and spawning habitat use by fall Chinook salmon: the importance of geomorphic features in large rivers. Environ Manag 22:655–669

    Article  CAS  Google Scholar 

  • Goetz F, Sitar S, Jasonowicz A, Seider M (2017) Reproduction of lake trout morphotypes at isle Royale in northern Lake Superior. Trans Am Fish Soc 146:268–282

    Article  Google Scholar 

  • Goodyear CS, Edsall TA, Ormsby-Dempsey DM, Moss GD, Polanski PE (1982) Atlas of spawning and nursery areas of Great Lakes fishes. Vols 1–14, U.S. Fish Wildl. Serv., Washington, D.C. FWS/OBS-82/52

  • Graham PJ, Shepard BB, Fraley JJ (1981) Use of stream habitat classifications to identify bull trout spawning areas in streams. In: Armantrout NB (ed) Acquisition and utilization of aquatic habitat inventory information. Western Division of the American Fisheries Society, Portland, pp 186–191

    Google Scholar 

  • Grannemann NG, Hunt RJ, Nicholas JR, Reilly TE, Winter TC (2000) The importance of ground water in the Great Lakes region (No. 2000–4008). US Geological Survey

  • Greenwood SL, Kleman J (2010) Glacial landforms of extreme size in the Keewatin sector of the Laurentide ice sheet. Quat Sci Rev 29:1894–1910

    Article  Google Scholar 

  • Grimm A, Brooks CN, Binder TR, Riley SC, Farha SA, Shuchman RA, Krueger CC (2016) Identification of lake trout Salvelinus namaycush spawning habitat in northern Lake Huron using high-resolution satellite imagery. J Great Lakes Res 42:127–135

    Article  Google Scholar 

  • Guillemette F, Vallée C, Bertolo A, Magnan P (2011) The evolution of redd site selection in brook charr in different environments: same cue, same benefit for fitness. Freshw Biol 56:1017–1029

    Article  Google Scholar 

  • Gunn JM, Pitblado R (2004) Lake trout, the boreal shield, and the factors that shape lake trout ecosystems. In: Gunn JM, Steedman RJ, Ryder RA (eds) Boreal shield watersheds: lake trout ecosystems in a changing environment. CRC Press, Boca Raton, pp 21–35

    Google Scholar 

  • Haack SK, Neff BP, Rosenberry DO, Savino JF, Lundstrom SC (2005) An evaluation of effects of groundwater exchange on nearshore habitats and water quality of western Lake Erie. J Great Lakes Res 31(Suppl. 1):45–63

    Article  CAS  Google Scholar 

  • Habel F, Bagtzoglou AC (2005) Wave induced flow and transport in sediment beds. J Am Water Resour Assoc 41:461–476

    Article  Google Scholar 

  • Hacker VA (1956) Biology and management of 1ake trout in green Lake, Wisconsin. Trans Am Fish Soc 86:71–83

    Article  Google Scholar 

  • Håkanson L, Jansson M (2002) Principles of lake sedimentology. Blackburn Press, Caldwell, 316 p

    Google Scholar 

  • Hammar J (1984) Ecological characters of different combinations of sympatric populations of Arctic charr in Sweden. In: Johnson L, Burns B (eds) Biology of Arctic charr: proceedings of the international symposium on Arctic charr. University of Manitoba Press, Winnipeg, pp 35–63

    Google Scholar 

  • Hansen EA (1975) Some effects of groundwater on brown trout redds. Trans Am Fish Soc 104:100–110

    Article  Google Scholar 

  • Hare DK, Briggs MA, Rosenberry DO, Boutt DF, Lane JW (2015) A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water. J Hydrol 530:153–166

    Article  Google Scholar 

  • Hayashi M, Rosenberry DO (2002) Effects of ground water exchange on the hydrology and ecology of surface water. Ground Water 40:309–316

    Article  CAS  PubMed  Google Scholar 

  • Heggenes J, Røed KH, Jorde PE, Brabrand Å (1993) Dynamic micro-geographic and temporal genetic diversity in vertebrates: the case of lake-spawning populations of brown trout (Salmo trutta). Mol Ecol 18:1100–1111

    Article  CAS  Google Scholar 

  • Hicock SR, Kristjansson F, Sharpe DR (1989) Carbonate till as a soft bed for Pleistocene ice streams on the Canadian shield north of Lake Superior. Can J Earth Sci 26:2249–2254

    Article  Google Scholar 

  • Hoaglund JR, Huffman GC, Grannemann NG (2002) Michigan basin regional ground water flow discharge to three Great Lakes. Groundwater 40:390–406

    Article  CAS  Google Scholar 

  • Huettel M, Røy H, Precht E, Ehrenhauss S (2003) Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia 494:231–236

    Article  CAS  Google Scholar 

  • Hutchinson GE (1957) A treatise on limnology. John Wiley and Sons, New York

    Google Scholar 

  • Imberger J (1985) The diurnal mixed layer. Limnol Oceanogr 30:737–770

    Article  Google Scholar 

  • Imboden DM, Wüest A (1995) Mixing mechanisms in lakes. In: Lerman A, Imboden DM, Gat JR (eds) Physics and chemistry of lakes. Springer, Berlin

    Google Scholar 

  • Isaak DJ, Thurow RF, Rieman BE, Dunham JB (2007) Chinook salmon use of spawning patches: relative roles of habitat quality, size, and connectivity. Ecol Appl 17:352–364

    Article  PubMed  Google Scholar 

  • Jamieson EC, Rennie CD, Jacobson RB, Townsend RD (2011) 3-D flow and scour near a submerged wing dike: ADCP measurements on the Missouri River. Water Resour Res 47:7

    Article  Google Scholar 

  • Janssen J, Jude DJ, Edsall TA, Paddock RW, Wattrus N, Toneys M, McKee P (2006) Evidence of lake trout reproduction at Lake Michigan's mid-lake reef complex. J Great Lakes Res 32:749–763

    Article  Google Scholar 

  • Jelinski DE, Wu J (1996) The modifiable areal unit problem and implications for landscape ecology. Landsc Ecol 11:129–140

    Article  Google Scholar 

  • Johnson L (1975) Physical and chemical characteristics of Great Bear Lake, Northwest Territories. J Fish Res Board Can 32:1971–1987

    Article  CAS  Google Scholar 

  • Johnson L (1980) The Arctic charr, Salvelinus alpinus. In: Balon EK (ed) Charrs, salmonid fishes of the genus. Salvelinus. Junk, The Hague, pp 15–98

    Google Scholar 

  • Johnson RK, Goedkoop W, Sandin L (2004) Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshw Biol 49:1179–1194

    Article  Google Scholar 

  • Jones NE (2010) Incorporating lakes within the river discontinuum: longitudinal changes in ecological characteristics in stream–lake networks. Can J Fish Aquat Sci 67:1350–1362

    Article  Google Scholar 

  • Jones NE, Parna M, Parna S, Chong S (2018) Evidence of lake trout (Salvelinus namaycush) spawning and spawning habitat use in the Dog River, Lake Superior. J Great Lakes Res 44:1117–1122

    Article  Google Scholar 

  • Jonsson B, Hindar K (1982) Reproductive strategy of dwarf and normal Arctic charr (Salvelinus alpinus) from Vangsvatnet Lake, western Norway. Can J Fish Aquat Sci 39:1404–1413

    Article  Google Scholar 

  • Jude DJ, Klinger SA, Enk MD (1981) Evidence of natural reproduction by planted lake trout in Lake Michigan. J Great Lakes Res 7:57–61

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater - surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  CAS  Google Scholar 

  • Kelso JRM (1995) The relation between reproductive capacity of a Lake trout population and the apparent availability of spawning habitat in Megisan Lake, Ontario. J Great Lakes Res 21(Suppl. 1):212–217

    Article  Google Scholar 

  • Kelso JRM, MacCallum WR, Thibodeau ML (1995) Lake trout spawning at five sites in Ontario waters of Lake Superior. J Great Lakes Res 21(Suppl. l):202–211

    Article  Google Scholar 

  • Kempema EW, Reimnitz E, Barnes PW (2001) Anchor-ice formation and ice rafting in southwestern Lake Michigan, USA. J Sediment Res 71:346–354

    Article  Google Scholar 

  • Kircheis FW (1976) Reproductive biology and early life history of the Sunapee trout of floods pond, Maine. Trans Am Fish Soc 105:615–619

    Article  Google Scholar 

  • Kirillin G, Leppäranta M, Terzhevik A, Granin N, Bernhardt J, Engelhardt C, Efremova T, Golosov S, Palshin N, Sherstyankin P, Zdorovennova G, Zdorovennov R (2012) Physics of seasonally ice-covered lakes: a review. Aquat Sci 74:659–682

    Article  Google Scholar 

  • Klemetsen A, Amundsen P, Knudsen R, Hermansen B (1997) A profundal, winter-spawning morph of Arctic charr Salvelinus alpinus (L.) in Lake Fjellfrøsvatn, northern Norway. Nord J Freshw Res 73:13–23

    Google Scholar 

  • Klemetsen A, Amundsen P-A, Dempson JB, Jonsson B, Jonsson N, O’Connell MF, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Article  Google Scholar 

  • Kling GW, Kipphut GW, Miller MM, O'Brien WJ (2000) Integration of lakes and streams in a landscape perspective: the importance of material processing on spatial patterns and temporal coherence. Freshw Biol 43:477–497

    Article  Google Scholar 

  • Kondolf GM (2000) Assessing salmonid spawning gravel quality. Trans Am Fish Soc 129:262–281

    Article  Google Scholar 

  • Kondolf GM, Wolman MG (1993) The sizes of salmonid spawning gravels. Wat Res Res 7:2275–2285

    Article  Google Scholar 

  • Kornelsen KC, Coulibaly P (2014) Synthesis review on groundwater discharge to surface water in the Great Lakes basin. J Great Lakes Res 40:247–256

    Article  Google Scholar 

  • Kotliar NB, Wiens JA (1990) Multiple scales of patchiness and patch structure: a hierarchical framework for the study of heterogeneity. Oikos 59:253–260

    Article  Google Scholar 

  • Kovalenko KE, Thomaz SM, Warfe DM (2012) Habitat complexity: approaches and future directions. Hydrobiologia 685:1–17

    Article  Google Scholar 

  • Kratz TK, MacIntyre S, Webster KE (2005) Causes and consequences of spatial heterogeneity in lakes. In: Lovett GM, Turner MG, Jones CG, Weathers KC (eds) Ecosystem function in heterogeneous landscapes. Springer, New York, pp 329–346

    Chapter  Google Scholar 

  • Lacey RWJ, Roy AG (2008) The spatial characterization of turbulence around large roughness elements in a gravel-bed river. Geomorphology 102:542–553

    Article  Google Scholar 

  • Lapointe M (2012) River geomorphology and salmonid habitat: some examples illustrating their complex association from redd to riverscape scales. In: Church M, Biron P, Roy A (eds) Gravel-bed Rivers: processes, tools, environments. Wiley-Blackwell, Chichester, pp 193–215

    Google Scholar 

  • Layton L, Klammler H, Hatfield K, Cho J, Newman M, Annable M (2017) Development of a passive sensor for measuring vertical cumulative water and solute mass fluxes in lake sediments and streambeds. Adv Wat Resources 105:1–12

    Article  Google Scholar 

  • Loftus KH (1958) Studies on river-spawning populations of lake trout in eastern Lake Superior. Trans Am Fish Soc 87:259–277

    Article  Google Scholar 

  • Low JJ, Igoe F, Davenport J, Harrison SSC (2011) Littoral spawning habitats of three southern Arctic charr (Salvelinus alpinus L.) populations. Ecol Freshw Fish 20:537–547

    Article  Google Scholar 

  • MacLean NG, Gunn JM, Hicks FJ, Ihssen PE, Malhiot M, Mosindy TE, Wilson W (1990) Environmental and genetic factors affecting the physiology and ecology of lake trout. Ontario Min Nat Res, Toronto, 84 p

    Google Scholar 

  • Manny BA, Edsall TA, Peck JW, Kennedy GW, Frank AM (1995) Survival of lake trout eggs on reputed spawning grounds in lakes Huron and superior: in situ incubation 1987-1988. J Great Lakes Res 21(Suppl. 1):302–312

    Article  Google Scholar 

  • Marcus MD, Hubert WA, Anderson SH. (1984) Habitat suitability index models: Lake trout (exclusive of the Great Lakes). US Fish Wildl Serv FWS/OBS-82/10.84. 12 p

  • Margold M, Stokes CR, Clark CD (2015) Ice streams in the Laurentide ice sheet: identification, characteristics and comparison to modern ice sheets. Earth Sci Rev 143:117–146

    Article  Google Scholar 

  • Marion A, Nikora V, Puijalon S, Bouma T, Koll D, Ballio F, Tait S, Zaramella M, Sukhodolov A, O'Hare M, Wharton G, Aberle J, Tregnaghi M, Davies O, Nepf H, Parker G, Statzner B (2014) Aquatic interfaces: a hydrodynamic and ecological perspective. J Hydraul Res 52:744–758

    Article  Google Scholar 

  • Marsden JE, Chotkowski MA (2001) Lake trout spawning on artificial reefs and the effect of zebra mussels: fatal attraction? J Great Lakes Res 27:33–43

    Article  Google Scholar 

  • Marsden JE, Krueger CC (1991) Spawning by hatchery-origin lake trout (Salvelinus namaycush) in Lake Ontario: data from egg collections, substrate analysis, and diver observations. Can J Fish Aquat Sci 48:2377–2384

    Article  Google Scholar 

  • Marsden JE, Krueger CC, Schneider CP (1988) Evidence of natural reproduction by stocked lake trout in Lake Ontario. J Great Lakes Res 14:3–8

    Article  Google Scholar 

  • Marsden JE, Casselman JM, Edsall TA et al (1995a) Lake trout spawning habitat in the Great Lakes: a review of current knowledge. J Great Lakes Res 21(Suppl. 1):487–497

    Article  Google Scholar 

  • Marsden JE, Perkins DL, Krueger CC (1995b) Recognition of spawning areas by lake trout: deposition and survival of eggs on small, man-made rock piles. J Great Lakes Res 21(Suppl. 1):330–336

    Article  Google Scholar 

  • Marsden JE, Ellrott BJ, Claramunt RM, Jonas JL, Fitzsimons JD (2005) A comparison of lake trout spawning, fry emergence, and habitat use in lakes Michigan, Huron, and Champlain. J Great Lakes Res 31:492–508

    Article  Google Scholar 

  • Marsden JE, Binder TR, Johnson J, He J, Dingledine N, Adams J, Johnson NS, Buchinger TJ, Krueger CC (2016) Five-year evaluation of habitat remediation in Thunder Bay, Lake Huron: comparison of constructed reef characteristics that attract spawning lake trout. Fish Res 183:275–286

    Article  Google Scholar 

  • Martin NV (1955) The effects of drawdowns on lake trout reproduction and the use of artificial spawning beds. Trans 20th N Am Wildl Conf:263–271

  • Martin NV (1957) Reproduction of lake trout in Algonquin Park, Ontario. Trans Am Fish Soc 86:231–244

    Article  Google Scholar 

  • Martin NV, Olver CH (1980) The lake charr, Salvelinus namaycush. In: Balon EK (ed) Charrs, salmonid fishes of the genus Salvelinus. Dr. W. Junk Publishing, The Hague, pp 205–277

    Google Scholar 

  • McAughey SC, Gunn JM (1995) The behavioral response of lake trout to a loss of traditional spawning sites. J Great Lakes Res 21(Suppl. 1):375–383

    Article  Google Scholar 

  • McCrimmon HR (1958) Observations on the spawning of lake trout, Salvelinus namaycush, and the post-spawning movement of adult trout in Lake Simcoe. Can Fish Cult 23:3–11

    Google Scholar 

  • Menzies J (ed) (2002) Modern and past glacial environments. Butterworth-Heineman, Oxford

    Google Scholar 

  • Miller RB, Kennedy WA (1948) Observations on the lake trout of Great Bear Lake. J Fish Res Bd Can 7:176–189

    Article  Google Scholar 

  • Miller H, Winfield IJ, Fletcher JM, James JB, van Rijn J, Bull JM, Cotterill CJ (2015) Distribution, characteristics and condition of Arctic charr (Salvelinus alpinus) spawning grounds in a differentially eutrophicated twin-basin lake. Ecol Freshw Fish 24:32–43

    Article  Google Scholar 

  • Minns CK, Wichert GA (2005) A framework for defining fish habitat domains in Lake Ontario and its drainage. J Great Lakes Res 31:6–2

    Article  Google Scholar 

  • Minns CK, Randall RG, Moore JE, Cairns VW (1996) A model simulating the impact of habitat supply limits on northern pike, Esox lucius, in Hamilton harbour, Lake Ontario. Can J Fish Aquat Sci 53(Suppl. 1):20–34

    Article  Google Scholar 

  • Minns CK, Moore JE, Shuter BJ, Mandrak NE (2008) A preliminary national analysis of some key characteristics of Canadian lakes. Can J Fish Aquat Sci 65:1763–1778

    Article  Google Scholar 

  • Moir HJ, Gibbins CN, Souldby C, Webb J (2004) Linking channel geomorphic characteristics to spatial patterns of spawning activity and discharge use by Atlantic salmon (Salmo salar L.). Geomorphology 60:21–35

    Article  Google Scholar 

  • Montgomery DR, Beamer EM, Pess GR, Quinn TP (1999) Channel type and salmonid spawning distribution and abundance. Can J Fish Aquat Sci 56:377–387

    Article  Google Scholar 

  • Montgomery DR, Buffington JM (1997) Channel reach morphology in mountain drainage basins. Geol Soc Am Bull 109:596–611

    Article  Google Scholar 

  • Moran SR, Clayton L, Hooke RL, Fenton MM, Andriashek LD (1980) Glacier-bed landforms of the prairie region of North America. J Glaciol 5:457–476

    Article  Google Scholar 

  • Mortimer CH (2004) Lake Michigan in motion: responses of an inland sea to weather, earth-spin, and human activities. Univ of Wisconsin Press, Madison

    Google Scholar 

  • Muhlfeld CC, Giersch JJ, Marotz B (2012) Seasonal movements of non-native lake trout in a connected lake and river system. Fish Manag Ecol 19:224–232

    Article  Google Scholar 

  • Muirhead JW (2014) High-resolution spatial and temporal sensitivity of river hydrodynamics: implications for walleye (Sander vitreus) and lake sturgeon (Acipenser fulvescens) spawning habitat use in a large regulated river. M.Sc. thesis, University of Waterloo, Waterloo, Ontario, Canada

  • Muste M, Yu K, Spasojevic M (2004) Practical aspects of ADCP data for quantification of mean river flow characteristics; part 1: moving-vessel measurements. Flow Meas Instrum 15:1–16

    Article  Google Scholar 

  • Neff MR, Jackson DA (2012) Geology as a structuring mechanism of stream fish communities. Trans Am Fish Soc 141:962–974

    Article  Google Scholar 

  • Nester RT, Poe TP (1987) Visual observations of historical lake trout spawning grounds in western Lake Huron. N Am J Fish Manag 7:418–424

    Article  Google Scholar 

  • Nikora V (2010) Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res Appl 26:367–384

    Article  Google Scholar 

  • Northcote TG, Bull DJ (2007) Successful shoreline spawning of rainbow trout in two Canadian alpine lakes. J Fish Biol 71:938–941

    Article  Google Scholar 

  • Peck JW (1981) Dispersal of lake trout fry from an artificial spawning reef in Lake Superior. Mich Dep Nat Res, Fish Res Rep 1982

  • Peck JW (1982) Extended residence of young-of-the-year lake trout in shallow water. Trans Am Fish Soc 111:775–778

    Article  Google Scholar 

  • Peck JW (1986) Dynamics of reproduction by hatchery lake trout on a man-made spawning reef. J Great Lakes Res 12:293–303

    Article  Google Scholar 

  • Perkins DL, Krueger CC (1995) Dynamics of reproduction by hatchery-origin lake trout (Salvelinus namaycush) at Stony Island reef, Lake Ontario. J Great Lakes Res 21(Suppl. 1):400–417

    Article  Google Scholar 

  • Phillips RW, Claire EW (1966) Intergravel movement of the reticulate sculpin, Cottus perplexus, and its potential as a predator on salmonid embryos. Trans Am Fish Soc 95:210–212

    Article  Google Scholar 

  • Pinheiro VM, Stockwell JD, Marsden JE (2016) Lake trout (Salvelinus namaycush) spawning site use in Lake Champlain. J Great Lakes Res 43:345–351

    Article  Google Scholar 

  • Platts WS, Megahan WF, Minshall WG (1983) Methods for evaluating stream, riparian, and biotic conditions. Gen. Tech. Rep. INT-138, USDA Forest Service, Rocky Mountain Research Station, Ogden, UT

  • Poff NL (1997) Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J North Am Bentholog Soc 16:391–409

    Article  Google Scholar 

  • Poff NL, Allan JD, Bain MB, Karr JR, Prestegaard DL, Richter BD, Sparks RE, Stromberg JC (1997) The natural flow regime. BioScience 47:769–784

    Article  Google Scholar 

  • Power G (2002) Charrs, glaciations and seasonal ice. Env Biol Fishes 64:17–35

    Article  Google Scholar 

  • Power G, Brown RS, Imhof JG (1999) Groundwater and fish - insights from northern North America. Hydrol Process 13:401–422

    Article  Google Scholar 

  • Prevost G (1957) Use of artificial and natural spawning beds by lake trout. Trans Am Fish Soc 86:258–260

    Article  Google Scholar 

  • Purych P (1980) Successful reproduction of introduced lake trout in Horner Lake, Ontario. Prog Fish Cult 42:163–164

    Article  Google Scholar 

  • Rao YR, Schwab DJ (2007) Transport and mixing between the coastal and offshore waters in the Great Lakes: a review. J Great Lakes Res 33:202–218

    Article  Google Scholar 

  • Rao YR, McCormick MJ, Murthy CR (2004) Circulation during winter and northerly storm events in southern Lake Michigan. J Geophys Res 107:C01010

    Google Scholar 

  • Rawson DS (1950) The physical limnology of Great Slave Lake. J Fish Res Bd Can 8:3–66

    Article  Google Scholar 

  • Redman R, Mackey S, Dub J, Czesny S (2017) Lake trout spawning habitat suitability at two offshore reefs in Illinois waters of Lake Michigan. J Great Lakes Res 43:335–344

    Article  Google Scholar 

  • Rice SP, Lancaster J, Kemp P (2010) Experimentation at the interface of fluvial geomorphology, stream ecology and hydraulic engineering and the development of an effective, interdisciplinary river science. Earth Surf Process Landf 35:64–77

    Article  Google Scholar 

  • Richards C, Bonde J, Schreiner D, Selgeby J, Cholwek G, Yin K (1999) Mapping lake trout spawning habitat along Minnesota's north shore. NRRI Tech Rep; NRRI/TR-99-01

  • Ridgway MS, Blanchfield PJ (1998) Brook trout spawning areas in lakes. Ecol Freshw Fish 7:140–145

    Article  Google Scholar 

  • Riera JL, Magnuson JJ, Kratz TK, Webster KE (2000) A geomorphic template for the analysis of lake districts applied to the northern Highland Lake District, Wisconsin, USA. Freshw Biol 43:301–318

    Article  Google Scholar 

  • Riley SC, Binder TR, Wattrus NJ, Faust MD, Janssen J, Menzies J, Marsden JE, Ebener MP, Bronte CR, He JX, Tucker TR, Hansen MJ, Thompson HT, Muir AM, Krueger CC (2014) Lake trout in northern Lake Huron spawn on submerged drumlins. J Great Lakes Res 40:415–420

    Article  Google Scholar 

  • Riley SC, Binder TR, Tucker TR, Menzies J, Eyles N, Janssen J, Muir AM, Esselman PC, Wattrus NJ, Krueger CC (2017) Islands in the ice stream: were spawning habitats for native salmonids in the Great Lakes created by paleo-ice streams? Fish Fish 18:347–359

    Article  Google Scholar 

  • Riley SC, Binder TR, Tucker TR, Krueger CC (2018) Evidence of repeated long-distance movements by lake charr Salvelinus namaycush in Lake Huron. Env Biol Fishes 101:531–545

    Article  Google Scholar 

  • Riseng CM, Wehrly KE, Wang L, Rutherford ES, McKenna JE Jr, Johnson LB, Mason LA, Castiglione C, Hollenhorst TP, Sparks-Jackson BL, Sowa SP (2018) Ecosystem classification and mapping of the Laurentian Great Lakes. Can J Fish Aquat Sci 75:1693–1712

    Article  Google Scholar 

  • Robinson C, Wallace H, Ji T (2017) Application of the tracer radon-222 to identify groundwater discharge hotspots along the Lake Simcoe shoreline. p. 31 in Russell, H A J; Ford, D; Priebe, E H (eds.), Regional-scale groundwater geoscience in southern Ontario: an Ontario Geological Survey, Geological Survey of Canada, and Conservation Ontario open house. Geological Survey of Canada, Open File 8212, https://doi.org/10.4095/299798

  • Roseman EF, Taylor WW, Hayes DB, Haas RC, Knight RL, Paxton KO (1996) Walleye egg deposition and survival on reefs in western Lake Erie. Ann Zool Fenn 33:341–351

    Google Scholar 

  • Rosenberry DO, Sheibley RW, Cox SE, Simonds FW, Naftz DL (2013) Temporal variability of exchange between groundwater and surface water based on high-frequency direct measurements of seepage at the sediment-water interface. Water Resour Res 49:2975–2986

    Article  Google Scholar 

  • Rosenberry DO, Lewandowski J, Meinikmann K, Nützmann G (2015) Groundwater – the disregarded component in lake water and nutrient budgets. Part 1: effects of groundwater on hydrology. Hydrol Process 29:2895–2921

    Article  Google Scholar 

  • Rosenfeld JS, Hatfield T (2006) Information needs for assessing critical habitat of freshwater fish. Can J Fish Aquat Sci 63:683–698

    Article  Google Scholar 

  • Rowan DJ, Kalff J, Rasmussen JV (1992) Estimating the mud deposition boundary depth in lakes from wave theory. Can J Fish Aquat Sci 49:2490–2497

    Article  Google Scholar 

  • Royce WF (1951) Breeding habits of lake trout in New York. Fish Bull 52:59–76

    Google Scholar 

  • Ryder RA, Johnson L (1972) The future of salmonid communities in north American oligotrophic lakes. J Fish Res Bd Can 29:941–949

    Article  Google Scholar 

  • Savino JF, Henry MG (1991) Feeding rate of slimy sculpin and burbot on young lake charr in laboratory reefs. Env Biol Fishes 31:275–282

    Article  Google Scholar 

  • Savino JF, Miller JE (1991) Crayfish (Orconectes virilis) feeding on young lake trout (Salvelinus namaycush): effect of rock size. J Freshw Ecol 6:161–170

    Article  Google Scholar 

  • Sawatzky CD, Michalak D, Reist JD, Carmichael TJ, Mandrak NE, Heuring LG (2007) Distributions of freshwater and anadromous fishes from the mainland Northwest Territories, Canada. Can Manuscr Rep Fish Aquat Sci 2793, Ottawa

  • Schall BJ, Cross TK, Katzenmeyer E, Zentner DL (2017) Use of wind fetch and shoreline relief to predict nearshore substrate composition in a north temperate lake. N Am J Fish Manag 37:935–942

    Article  Google Scholar 

  • Schertzer WM, Rouse WR, Blanken PD (2000) Cross-lake variation of physical limnological and climatological processes of Great Slave Lake. Phys Geogr 21:385–406

    Article  Google Scholar 

  • Schreiner DR, Bronte CR, Payne NR, Fitzsimons JD, Casselman JM (1995) Use of egg traps to investigate lake trout spawning in the Great Lakes. J Great Lakes Res 21(Suppl. 1):433–444

    Article  Google Scholar 

  • Scott WB, Crossman EJ (1998) Freshwater fishes of Canada. Galt House Publications Ltd, Oakville, Ontario

  • Sharpe DR, Kjarsgaard BA, Knight RD, Russell HAJ, Kerr DE (2017) Glacial dispersal and flow history, east arm area of Great Slave Lake, NWT, Canada. Quat Sci Rev 165:49–72

    Article  Google Scholar 

  • Shaw RD, Prepas EE (1990) Groundwater-lake interactions: I. accuracy of seepage meter estimates of lake seepage. J Hydrol 119:105–120

    Article  Google Scholar 

  • Shields FD Jr, Knight SS, Testa S III, Cooper CM (2003) Use of acoustic doppler current profilers to describe velocity distributions at the reach scale. J Am Wat Res Ass 39:1397–1408

    Article  CAS  Google Scholar 

  • Skoglund S, Siwertsson A, Amundsen P-A, Knudsen R (2015) Morphological divergence between three Arctic charr morphs - the significance of the deep-water environment. Ecol Evol 5:3114–3129

    Article  PubMed  PubMed Central  Google Scholar 

  • Skúlason S, Snorasson S, Noakes DLG, Ferguson MM, Malmquist HJ (1989) Segregation in spawning and early life history among polymorphic Arctic charr, Salvelinus alpinus, in Thingvallavatn, Iceland. J Fish Biol 35(Suppl. A):225–232

    Google Scholar 

  • Sly PG (1973) The significance of sediment deposits in large lakes and their energy relationships. In Proceedings of the Symposium of the Hydrology of Lakes (IAHS Publication 109), Helsinki, Finland, pp. 383–396

  • Sly PG, Evans DO (1996) Suitability of habitat for spawning lake trout. J Aquat Ecosyst Health 5:153–175

    Article  Google Scholar 

  • Sly PG, Schneider CP (1984) The significance of seasonal changes on a modern cobble-gravel beach used by spawning lake trout, Lake Ontario. J Great Lakes Res 10:78–84

    Article  Google Scholar 

  • Sly PG, Thomas RL (1974) Review of geological research as it relates to an understanding of Great Lakes limnology. J Fish Res Bd Can 31:795–825

    Article  CAS  Google Scholar 

  • Sly PG, Widmer CC (1984) Lake trout (Salvelinus namaycush) spawning habitat in Seneca Lake, New York. J Great Lakes Res 10:168–189

    Article  Google Scholar 

  • Smith MW (2014) Roughness in the earth sciences. Earth-Sci Rev 136:202–225

    Article  Google Scholar 

  • Soranno PA, Webster KE, Riera JL et al (1999) Spatial variation among lakes within landscapes: ecological organization along lake chains. Ecosystems 2:395–410

    Article  CAS  Google Scholar 

  • Sowden TK, Power G (1985) Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrates. Trans Am Fish Soc 114:804–812

    Article  Google Scholar 

  • Stanford JA, Ward JV (1988) The hyporheic habitat of river ecosystems. Nature 335:64–66

    Article  Google Scholar 

  • Stanford JA, Ward JV (1993) An ecosystem perspective of alluvial rivers: connectivity and the hyporheic corridor. J N Am Benthol Soc 121:48–60

    Article  Google Scholar 

  • Storrar RD, Stokes CR, Evans DJ (2013) A map of large Canadian eskers from landsat satellite imagery. J Maps 9:456–473

    Article  Google Scholar 

  • Storrar RD, Stokes CR, Evans DJ (2014) Morphometry and pattern of a large sample (>20,000) of Canadian eskers and implications for subglacial drainage beneath ice sheets. Quat Sci Rev 1(5):1–25

    Article  Google Scholar 

  • Strayer DL, Findlay SEG (2010) Ecology of freshwater shore zones. Aquat Sci 72:127–163

    Article  CAS  Google Scholar 

  • Swanson HK, Kidd KA (2010) Mercury concentrations in Arctic food fishes reflect the presence of anadromous arctic charr (Salvelinus alpinus), species, and life history. Environ Sci Technol 44:3286–3292

    Article  CAS  PubMed  Google Scholar 

  • Thibodeaux LJ, Boyle JD (1987) Bedform-generated convective transport in bottom sediment. Nature 325:341–343

    Article  Google Scholar 

  • Thomas RL, Kemp AL, Lewis CFM (1973) The surficial sediments of Lake Huron. Can J Earth Sci 10:226–271

    Article  CAS  Google Scholar 

  • Tibbits WT (2007) The behavior of lake trout, Salvelinus namaycush (Walbaum 1792) in Otsego Lake : a documentation of the strains, movements, and the natural reproduction of lake trout under present conditions. MA Thesis, SUNY Oneonta

  • Tokeshi M, Arakaki S (2012) Habitat complexity in aquatic systems: fractals and beyond. Hydrobiologia 685:27–47

    Article  Google Scholar 

  • Tonina D, Buffington JM (2007) Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modeling. Water Resour Res 43:W01421

    Article  Google Scholar 

  • Tonn WM, Magnuson JJ, Rask M, Toivonen J (1990) Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. Am Nat 136:345–375

    Article  Google Scholar 

  • Toth J (1963) A theoretical analysis of groundwater flow in small drainage basins. J Geophys Res 68:4795–4812

    Article  Google Scholar 

  • Townsend CR (1996) Concepts in river ecology: pattern and process in the catchment hierarchy. Arch Hydrobiol Suppl 113:3–21

    Google Scholar 

  • Trommelen MS, Ross M, Campbell JE (2012) Glacial terrain zone analysis of a fragmented paleoglaciologic record, Southeast Keewatin sector of the Laurentide ice sheet. Quat Sci Rev 40:1–20

    Article  Google Scholar 

  • Van Grinsven M, Mayer A, Huckins C (2012) Estimation of streambed groundwater fluxes associated with coaster brook trout spawning habitat. Groundwater 50:432–441

    Article  CAS  Google Scholar 

  • Venteris ER, May CJ (2014) Cost-effective mapping of benthic habitat in inland reservoirs through split-beam sonar, indicator kriging, and historical geological data. PLoS One 9(4):e95940. https://doi.org/10.1371/journal.pone.0095940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner WC (1982) Lake trout spawning habitat in the Great Lakes. Michigan Dept Nat Res Fisheries Division Research Report 1904, Lansing

  • Walker AF (2007) Stream spawning of Arctic charr in Scotland. Ecol Freshw Fish 16:47–53

    Article  Google Scholar 

  • Walker AF, Greer RB, Gardner AS (1988) Two ecologically distinct forms of arctic charr Salvelinus alpinus (L.) in loch Rannoch, Scotland. Biol Conserv 43:43–61

    Article  Google Scholar 

  • Wiens JA (1989) Spatial scaling in ecology. Funct Ecol 3:385–397

    Article  Google Scholar 

  • Wiens JA (2002) Riverine landscapes: taking landscape ecology into the water. Freshw Biol 47:501–515

    Article  Google Scholar 

  • Williams DD (1984) The hyporheic zone as a habitat for aquatic insects and associated arthopods. In: Rosenberg DM, Resh VH (eds) The ecology of aquatic insects. Praeger Publishers, New York, pp 430–455

    Google Scholar 

  • Williams DD, Hynes HBN (1974) The occurrence of benthos deep in the substratum of a stream. Freshw Biol 4:233–256

    Article  Google Scholar 

  • Wilson CC, Mandrak NE (2004) History and evolution of lake trout in Shield lakes: past and future challenges. P. 21–36 In Gunn, J. M., R. J. Steedman, and R. A. Ryder [Eds.] Boreal shield watersheds: lake trout ecosystems in a changing environment. Lewis, New York

  • Winter TC (2001a) Ground water and surface water: the linkage tightens, but challenges remain. Hydrol Process 15:3605–3606

    Article  Google Scholar 

  • Winter TC (2001b) The concept of hydrologic landscapes. J Am Water Resour Assoc 37:335–349

    Article  Google Scholar 

  • Witzel LD, MacCrimmon HR (1983) Embryo survival and alevin emergence of brook charr, Salvelinus fontinalis, and brown trout, Salmo trutta, relative to redd gravel composition. Can J Zool 61:1783–1792

    Article  Google Scholar 

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Groundwater 38:423–429

    Article  CAS  Google Scholar 

  • Wu J, Jelinski DE, Luck M, Tueller PT (2000) Multiscale analysis of landscape heterogeneity: scale variance and pattern metrics. Geogr Info Sci 6:6–19

    Google Scholar 

  • Wüest A, Lorke A (2003) Small-scale hydrodynamics in lakes. Annu Rev Fluid Mech 35:373–412

    Article  Google Scholar 

  • Young GC, Dey S, Rogers AD, Exton D (2017) Cost and time-effective method for multi-scale measures of rugosity, fractal dimension, and vector dispersion from coral reef 3D models. PLoS One 12(4):e0175341. https://doi.org/10.1371/journal.pone.0175341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Jones ML, Shuter BJ, Roseman EF (2009) A biophysical model of Lake Erie walleye explains interannual variation in recruitment. Can J Fish Aquat Sci 66:114–125

    Article  Google Scholar 

Download references

Acknowledgements

We thank Taaja Tucker for preparing Fig. 3. David Beauchamp, Donald Rosenberry, Erik Smith, Craig Stow, and three anonymous reviewers provided helpful comments on an earlier draft of this manuscript. The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Riley.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riley, S.C., Marsden, J.E., Ridgway, M.S. et al. A conceptual framework for the identification and characterization of lacustrine spawning habitats for native lake charr Salvelinus namaycush. Environ Biol Fish 102, 1533–1557 (2019). https://doi.org/10.1007/s10641-019-00928-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-019-00928-w

Keywords

Navigation