Skip to main content

Advertisement

Log in

Environmental influences on fish assemblage variation among ecologically similar glacial lakes

  • Published:
Environmental Biology of Fishes Aims and scope Submit manuscript

Abstract

The composition and structure of fish communities are affected by a variety of factors, both within the aquatic ecosystem and from the surrounding watershed. Many studies have examined what structures fish assemblages over broad spatial and environmental gradients. However, the influence of local environmental attributes on the observed variation in fish assemblages is less understood across finer spatial scales, where broad-scale climatic and anthropogenic factors are relatively similar. We used multiple linear regression to examine the relationships between environmental variables and various aspects of fish assemblages (including trophic function, community indices, and species composition) in 90 glacial lakes from northern Indiana, USA, from 1990 to 2010. Trophic structure and species composition were primarily related to water quality, whereas trophic level increased and omnivores declined as Secchi depth increased and phosphorus concentrations decreased. Species richness and diversity, in contrast, were positively linked to lake size and depth. We also found unique relationships among fish assemblages and environmental variables between samples collected using gill nets and night electrofishing, which may result from these gears sampling different assemblage components – therefore, relationships that were apparent in both sampling techniques (e.g., Secchi depth effects on trophic structure) may be the most robust and useful for improving aquatic ecosystem management on local scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Beckett DC, Aartila TP, Miller AC (1992) Contrasts in density of benthic invertebrates between macrophyte beds and open littoral patches in eau Galle Lake, Wisconsin. Am Midl Nat 127:77–90. doi:10.2307/2426324

    Article  Google Scholar 

  • Beitinger TL, Fitzpatrick LC (1979) Physiological and ecological correlates of preferred temperature in fish. Am Zool 19:319–329

    Article  Google Scholar 

  • Bivand R, Piras G (2015) Comparing implementations of estimation methods for spatial econometrics. J Stat Softw 63:1–36

    Google Scholar 

  • Bivand R, Hauke J, Kossowski T (2013) Computing the Jacobian in Gaussian spatial autoregressive models: an illustrated comparison of available methods. Geogr Anal 45:150–179

    Article  Google Scholar 

  • Bjornstad ON (2016) ncf: Spatial nonparametric covariance functions. R package version 1.1--7. https://CRAN.R-project.org/package=ncf. Accessed 4 March 2016

  • Brucet S, Pédron S, Mehner T, et al. (2013) Fish diversity in European lakes: geographical factors dominate over anthropogenic pressures. Freshw Biol 58:1779–1793. doi:10.1111/fwb.12167

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multi-model inference: A practical information-theoretic approach. Springer-Verlag, New York, N.Y.

    Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson JR (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Article  Google Scholar 

  • Chambers PA, Kaiff J (1985) Depth distribution and biomass of submersed aquatic macrophyte communities in relation to secchi depth. Can J Fish Aquat Sci 42:701–709. doi:10.1139/f85-090

    Article  Google Scholar 

  • Chu C, Lester NP, Giacomini HC, et al. (2015) Catch-per-unit-effort and size spectra of lake fish assemblages reflect underlying patterns in ecological conditions and anthropogenic activities across regional and local scales. Can J Fish Aquat Sci:1–12. doi:10.1139/cjfas-2015-0150

  • Core Team R (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Davis MA, Thompson K, Philip Grime J (2005) Invasibility: the local mechanism driving community assembly and species diversity. Ecography 28:696–704. doi:10.1111/j.2005.0906-7590.04205.x

    Article  Google Scholar 

  • Deines AM, Bunnell DB, Rogers MW, et al. (2015) A review of the global relationship among freshwater fish, autotrophic activity, and regional climate. Rev Fish Biol Fish 25:323–336. doi:10.1007/s11160-015-9384-z

    Article  Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64. doi:10.1046/j.1466-822X.2003.00322.x

    Article  Google Scholar 

  • Eadie JM, Keast A (1984) Resource heterogeneity and fish species diversity in lakes. Can J Zool 62:1689–1695. doi:10.1139/z84-248

    Article  Google Scholar 

  • Eschman DF (1985) Summary of the quaternary history of Michigan, Ohio and Indiana. J Geol Educ 33:161–167

    Article  Google Scholar 

  • Fausch KD, Lyons J, Karr JR, Angermeier PL (1990) Fish communities as indicators of environmental degradation. Am Fish Soc Symp 8:123–144

    Google Scholar 

  • Finke DL, Denno RF (2004) Predator diversity dampens trophic cascades. Nature 429:407–410. doi:10.1038/nature02554

    Article  CAS  PubMed  Google Scholar 

  • Friedlander AM, Parrish JD (1998) Habitat characteristics affecting fish assemblages on a Hawaiian coral reef. J Exp Mar Biol Ecol 224:1–30. doi:10.1016/S0022-0981(97)00164-0

    Article  Google Scholar 

  • Froese R, Pauly D (eds) (2015) FishBase. World Wide Web Electron Publ www.fishbase.org:version (04/2015).

  • Gaston GR, Rakocinski CF, Brown SS, Cleveland CM (1998) Trophic function in estuaries: response of macrobenthos to natural and contaminant gradients. Mar Freshw Res 49:833–846

    Article  Google Scholar 

  • Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19

    Article  Google Scholar 

  • Grabarkiewicz J, Davis W (2008) An introduction to freshwater fishes as biological indicators. US Environmental Protection Agency, Office of Environmental Information, Washington, D.C.

    Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613. doi:10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Guimarães T d FR, Hartz SM, Becker FG (2014) Lake connectivity and fish species richness in southern Brazilian coastal lakes. Hydrobiologia 740:207–217. doi:10.1007/s10750–014-1954-x

    Article  Google Scholar 

  • Hall RI, Leavitt PR, Quinlan R, et al. (1999) Effects of agriculture, urbanization, and climate on water quality in the northern Great Plains. Limnol Oceanogr 44:739–756. doi:10.4319/lo.1999.44.3_part_2.0739

    Article  CAS  Google Scholar 

  • Hayden B, Harrod C, Kahilainen KK (2014) Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish. Ecology 95:538–552. doi:10.1890/13-0264.1

    Article  PubMed  Google Scholar 

  • Heck KL Jr, Wetstone GS (1977) Habitat complexity and invertebrate species richness and abundance in tropical seagrass meadows. J Biogeogr 4:135–142. doi:10.2307/3038158

    Article  Google Scholar 

  • Hijmans RJ (2016) Geosphere: Spherical trigonometry. R package version 1.5-5. https://CRAN.Rproject.org/package=geosphere. Accessed 4 March 2016

  • Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. J Biogeogr 34:324–338. doi:10.1111/j.1365-2699.2006.01587.x

    Article  Google Scholar 

  • Homer C, Dewitz J, Fry J, et al. (2007) Completion of the 2001 national land cover database for the conterminous United States. Photogramm Eng Remote Sens 73:337–341

    Google Scholar 

  • IDNR (Indiana Department of Natural Resources) (1966) Guide to Indiana lakes. Indiana Department of Natural Resources. Indianapolis, IN, USA

    Google Scholar 

  • IDNR (Indiana Department of Natural Resources) (1993) Indiana lakes guide. Indiana Division of Water, Indianapolis, IN, USA

    Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, et al. (1997) Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342–343:151–164. doi:10.1023/A:1017046130329

    Article  Google Scholar 

  • Jeppesen E, Jensen JP, Søndergaard M, Lauridsen T (1999) Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity. In: Walz N, Nixdorf B (eds) Shallow Lakes ‘98 Springer Netherlands, pp 217–231

  • Jeppesen E, Peder Jensen J, Søndergaard M, et al. (2000) Trophic structure, species richness and biodiversity in Danish lakes: changes along a phosphorus gradient. Freshw Biol 45:201–218. doi:10.1046/j.1365-2427.2000.00675.x

    Article  CAS  Google Scholar 

  • Johnston CA (1991) Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Crit Rev Environ Control 21:491–565. doi:10.1080/10643389109388425

    Article  Google Scholar 

  • Lane JA, Portt CB, Minns CK (1996) Adult habitat characteristics of Great Lakes fishes. Canadian Manuscript Report of Fisheries and Aquatic Sciences No. 2358. Fisheries and Oceans Canada. http://publications.gc.ca/collections/collection_2007/dfo-mpo/Fs97-4-2358E.pdf. Accessed 13 July 2016

  • Lathrop RC, Carpenter SR (2013) Water quality implications from three decades of phosphorus loads and trophic dynamics in the Yahara chain of lakes. Inland Waters 4:1–14

    Article  Google Scholar 

  • Leach JH, Johnson MG, Kelso JRM, et al. (1977) Responses of percid fishes and their habitats to eutrophication. J Fish Res Board Can 34:1964–1971. doi:10.1139/f77-263

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The Theory of Island Biogeography. Princeton University Press, Princeton

    Google Scholar 

  • Magnuson JJ, Crowder LB, Medvick PA (1979) Temperature as an ecological resource. Am Zool 19:331–343. doi:10.1093/icb/19.1.331

    Article  Google Scholar 

  • Mason NWH, Irz P, Lanoiselée C, et al. (2008) Evidence that niche specialization explains species-energy relationships in lake fish communities. J Anim Ecol 77:285–296. doi:10.1111/j.1365-2656.2007.01350.x

    Article  PubMed  Google Scholar 

  • McGoff E, Solimini AG, Pusch MT, et al. (2013) Does lake habitat alteration and land-use pressure homogenize European littoral macroinvertebrate communities? J Appl Ecol 50:1010–1018. doi:10.1111/1365-2664.12106

    Article  Google Scholar 

  • Meador MR, Goldstein RM (2003) Assessing water quality at large geographic scales: relations among land use, water physicochemistry, riparian condition, and fish community structure. Environ Manag 31:504–517. doi:10.1007/s00267-002-2805-5

    Article  Google Scholar 

  • Mehner T, Diekmann M, Brämick U, Lemcke R (2005) Composition of fish communities in German lakes as related to lake morphology, trophic state, shore structure and human-use intensity. Freshw Biol 50:70–85. doi:10.1111/j.1365-2427.2004.01294.x

    Article  CAS  Google Scholar 

  • Menezes RF, Borchsenius F, Svenning J-C, et al. (2012) Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: does the method matter? Hydrobiologia 710:47–59. doi:10.1007/s10750-012-1025-0

    Article  Google Scholar 

  • Miller SA, Crowl TA (2006) Effects of common carp (Cyprinus carpio) on macrophytes and invertebrate communities in a shallow lake. Freshw Biol 51:85–94. doi:10.1111/j.1365-2427.2005.01477.x

    Article  Google Scholar 

  • Nolby LE, Zimmer KD, Hanson MA, Herwig BR (2015) Is the island biogeography model a poor predictor of biodiversity patterns in shallow lakes? Freshw Biol 60:870–880. doi:10.1111/fwb.12538

    Article  Google Scholar 

  • Nordström MC, Lindblad P, Aarnio K, Bonsdorff E (2010) A neighbour is a neighbour? Consumer diversity, trophic function, and spatial variability in benthic food webs. J Exp Mar Biol Ecol 391:101–111. doi:10.1016/j.jembe.2010.06.015

    Article  Google Scholar 

  • Olin M, Rask M, Ruuhljärvi J, et al. (2002) Fish community structure in mesotrophic and eutrophic lakes of southern Finland: the relative abundances of percids and cyprinids along a trophic gradient. J Fish Biol 60:593–612. doi:10.1111/j.1095-8649.2002.tb01687.x

    Article  Google Scholar 

  • Oskansen J, Blanchet FG, Kindt R, et al (2013) vegan: Community ecology package. R package version 2.0-7. https://CRAN.R-project.org/package=vegan. Accessed 20 Nov 2016

  • Pace ML, Cole JJ, Carpenter SR, Kitchell JF (1999) Trophic cascades revealed in diverse ecosystems. Trends Ecol Evol 14:483–488. doi:10.1016/S0169-5347(99)01723-1

    Article  PubMed  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am Nat 100:65–75

    Article  Google Scholar 

  • Perry CP (2011) The role of compensatory dynamics and influence of environmental factors across multiple spatial scales in structuring fish populations. Purdue University, Master of Science

    Google Scholar 

  • Persson L, Andersson G, Hamrin SF, Johansson L (1988) Predator regulation and primary production along the productivity gradient of temperate lake ecosystems. In: Carpenter SR (ed) Complex Interactions in Lake Communities Springer New York, pp 45–65

  • Persson L, Diehl S, Johansson L, et al. (1991) Shifts in fish communities along the productivity gradient of temperate lakes—patterns and the importance of size-structured interactions. J Fish Biol 38:281–293. doi:10.1111/j.1095-8649.1991.tb03114.x

    Article  Google Scholar 

  • Rich CF (2003) Effects of urbanization on habitats and fish communities of Midwestern headwater streams. Purdue University

  • Riera JL, Magnuson JJ, Kratz TK, Webster KE (2000) A geomorphic template for the analysis of lake districts applied to the northern highland Lake District, Wisconsin, U.S.a. Freshw Biol 43:301–318. doi:10.1046/j.1365-2427.2000.00567.x

    Article  Google Scholar 

  • Scavia D, David Allan J, Arend KK, et al. (2014) Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. J Gt Lakes Res 40:226–246. doi:10.1016/j.jglr.2014.02.004

    Article  CAS  Google Scholar 

  • Sullivan CJ, Coulter DP, Feiner ZS, et al. (2015) Influences of gear type and analytical methodology on fish assemblage characterisations in temperate lakes. Fish Manag Ecol 22:388–399. doi:10.1111/fme.12138

    Article  Google Scholar 

  • Tango PJ, Ringler NH (1996) The role of pollution and external refugia in structuring the Onondaga Lake fish community. Lake Reserv Manag 12:81–90. doi:10.1080/07438149609353999

    Article  Google Scholar 

  • Tilzer MM (1988) Secchi disk — chlorophyll relationships in a lake with highly variable phytoplankton biomass. Hydrobiologia 162:163–171. doi:10.1007/BF00014539

    Article  CAS  Google Scholar 

  • USGS (U.S. Geological Survey) (2004) National hygrography dataset http://nhd.usgs.gov/. Accessed 2 Jun 2011

  • Venables WS, Ripley BD (2002) Modern Applied Statistics with S, Fourth. Springer, New York

    Book  Google Scholar 

  • Verhoeven JTA, Arheimer B, Yin C, Hefting MM (2006) Regional and global concerns over wetlands and water quality. Trends Ecol Evol 21:96–103. doi:10.1016/j.tree.2005.11.015

    Article  PubMed  Google Scholar 

  • Verrill DD, Berry CR Jr (1995) Effectiveness of an electrical barrier and lake drawdown for reducing common carp and bigmouth buffalo abundances. North Am J Fish Manag 15:137–141. doi:10.1577/1548–8675(1995)015<0137:EOAEBA>2.3.CO;2

  • Viana DS, Santamaría L, Schwenk K, et al. (2014) Environment and biogeography drive aquatic plant and cladoceran species richness across Europe. Freshw Biol 59:2096–2106. doi:10.1111/fwb.12410

    Article  Google Scholar 

  • Wagner CE, Harmon LJ, Seehausen O (2014) Cichlid species-area relationships are shaped by adaptive radiations that scale with area. Ecol Lett 17:583–592. doi:10.1111/ele.12260

    Article  PubMed  Google Scholar 

  • Walser CA, Bart HL (1999) Influence of agriculture on in-stream habitat and fish community structure in piedmont watersheds of the Chattahoochee River system. Ecol Freshw Fish 8:237–246. doi:10.1111/j.1600-0633.1999.tb00075.x

    Article  Google Scholar 

  • Wehrly KE, Wiley MJ, Seelbach PW (1998) A thermal classification for lower Michigan rivers. Michigan Department of Natural Resources. Fisheries Division, Ann Arbor, Michigan, USA

    Google Scholar 

  • Wehrly KE, Breck JE, Wang L, Szabo-Kraft L (2012) A landscape-based classification of fish assemblages in sampled and unsampled lakes. Trans Am Fish Soc 141:414–425. doi:10.1080/00028487.2012.667046

    Article  Google Scholar 

  • West JM, Williams GD, Madon SP, Zedler JB (2003) Integrating spatial and temporal variability into the analysis of fish food web linkages in Tijuana estuary. Environ Biol Fish 67:297–309. doi:10.1023/A:1025843300415

    Article  Google Scholar 

  • Wichert GA, Rapport DJ (1998) Fish community structure as a measure of degradation and rehabilitation of riparian systems in an agricultural drainage basin. Environ Manag 22:425–443. doi:10.1007/s002679900117

    Article  Google Scholar 

  • Wilbur HM, Tinkle DW, Collins JP (1974) Environmental certainty, trophic level, and resource availability in life history evolution. Am Nat 108:805–817

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Indiana Department of Natural Resources, the Indiana Clean Lakes Program, and the Höök lab at Purdue University for providing data and resources used in this study. Funding was provided by the Department of Forestry and Natural Resources at Purdue University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary S. Feiner.

Ethics declarations

Ethical approval

All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Electronic supplementary material

ESM 1

(XLSX 33 kb)

ESM 2

(PDF 331 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feiner, Z.S., Coulter, D.P., Krieg, T.A. et al. Environmental influences on fish assemblage variation among ecologically similar glacial lakes. Environ Biol Fish 99, 829–843 (2016). https://doi.org/10.1007/s10641-016-0524-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10641-016-0524-7

Keywords

Navigation