Appendix
Proof of Proposition 1
The decentralized solution is a special case of the second stage of the modest coalition formation game, as detailed in Sect. 5. Thus, Proposition 6, which states that there exists a unique subgame perfect Nash equilibrium of the second stage of the game for any given membership structure \(\mathcal {C}\) and modesty parameter \(\mu\) also covers the decentralized solution. In fact, the decentralized solution is characterized by \(\mathcal {C}=\varnothing\), i.e., the coalition is an empty set and all countries \(i\in \mathcal {I}\) do not participate in the treaty.
In the solution () of the proof of Proposition 6 the decentralized solution corresponds to \(x=0\) and \(y=\Gamma\) implying also \(\bar{A}^\mathcal {C}=0\), \(\bar{A}^\mathcal {NC}=\mathcal {E}\) and \(\bar{s} = \frac{1-\delta }{\delta }\mathcal {E}\). Thus, we obtain for the aggregate emission abatement level \(A_t = \sum _{i \in \mathcal {I}} a_t^i\) and the stock of aggregate cumulative emissions \(s_t\):
$$\begin{aligned} A_{t}&= \mathcal {E} + B_2(T) (1-\lambda _2) \lambda _2^t - B_3(T) (1-\lambda _3) \lambda _3^t, \end{aligned}$$
(19a)
$$\begin{aligned} s_t&= \bar{s} + B_2(t) \lambda _2^t + B_3(T) \lambda _3^t, \end{aligned}$$
(19b)
with
$$\begin{aligned} \lambda _2&= \frac{1+\delta (1+\Gamma ) - \sqrt{[1+\delta (1+\Gamma )]^2-4\delta }}{2\delta }, \end{aligned}$$
(20a)
$$\begin{aligned} \lambda _3&= \frac{1+\delta (1+\Gamma ) + \sqrt{[1+\delta (1+\Gamma )]^2-4\delta }}{2\delta }, \end{aligned}$$
(20b)
and
$$\begin{aligned} B_2(T)&= - \frac{\mathcal {E} + (s_0-\bar{s})(1-\lambda _3)\lambda _3^{T}}{(1-\lambda _2) \lambda _2^T - (1-\lambda _3) \lambda _3^T}, \end{aligned}$$
(21a)
$$\begin{aligned} B_3(T)&= \frac{\mathcal {E} + (s_0-\bar{s})(1-\lambda _2)\lambda _2^{T}}{(1-\lambda _2) \lambda _2^T - (1-\lambda _3) \lambda _3^T}\ . \end{aligned}$$
(21b)
The individual countries’ abatement levels in the subgame perfect Nash equilibrium of the decentralized solution are given by:
$$\begin{aligned} a_t^i = \frac{\gamma _i}{\Gamma } A_{t}, \qquad \forall \ i\in \mathcal {I}, \quad t=0,\dots ,T\ . \end{aligned}$$
(22)
\(\square\)
Proof of Proposition 2
Also the global social optimum is a special case of the second stage of the modest coalition formation game, as detailed in Sect. 5. Thus, Proposition 6, which states that there exists a unique subgame perfect Nash equilibrium of the second stage of the game for any given membership structure \(\mathcal {C}\) and modesty parameter \(\mu\) also covers the global social optimum. In fact, the global social optimum is characterized by \(\mu =1\) and \(\mathcal {C}=\mathcal {I}\), i.e., the coalition is the grand coalition encompassing all countries \(i\in \mathcal {I}\) and fully internalizes all damages imposed by GHG emissions on all other countries.
In the solution () of the proof of Proposition 6 the global social optimum corresponds to \(x=\mathcal {AB}\) and \(y=0\) implying also \(\bar{A}^\mathcal {C}=\mathcal {E}\), \(\bar{A}^\mathcal {NC}=0\) and \(\bar{S} = \frac{1-\delta }{\delta }\mathcal {E}\). Thus, we obtain for the aggregate emission abatement level \(A_t = \sum _{i \in \mathcal {I}} a_t^i\) and the stock of aggregate cumulative emissions \(s_t\):
$$\begin{aligned} A_{t}&= \mathcal {E} + B_2(T) (1-\lambda _2) \lambda _2^t - B_3(T) (1-\lambda _3) \lambda _3^t, \end{aligned}$$
(23a)
$$\begin{aligned} s_t&= \bar{S} + B_2(t) \lambda _2^t + B_3(T) \lambda _3^t, \end{aligned}$$
(23b)
with
$$\begin{aligned} \lambda _2&= \frac{1+\delta (1+\mathcal {AB}) - \sqrt{[1+\delta (1+\mathcal {AB})]^2-4\delta }}{2\delta }, \end{aligned}$$
(24a)
$$\begin{aligned} \lambda _3&= \frac{1+\delta (1+\mathcal {AB}) + \sqrt{[1+\delta (1+\mathcal {AB})]^2-4\delta }}{2\delta }, \end{aligned}$$
(24b)
and
$$\begin{aligned} B_2(T)&= - \frac{\mathcal {E} + (s_0-\bar{s})(1-\lambda _3)\lambda _3^{T}}{(1-\lambda _2) \lambda _2^T - (1-\lambda _3) \lambda _3^T}, \end{aligned}$$
(25a)
$$\begin{aligned} B_3(T)&= \frac{\mathcal {E} + (s_0-\bar{s})(1-\lambda _2)\lambda _2^{T}}{(1-\lambda _2) \lambda _2^T - (1-\lambda _3) \lambda _3^T}\ . \end{aligned}$$
(25b)
The individual countries’ abatement levels in the global social optimum are given by:
$$\begin{aligned} a_T^i&= 0, \qquad \forall \ i\in \mathcal {I}, \end{aligned}$$
(26a)
$$\begin{aligned} a_t^i&= \frac{A_{t}}{\alpha _i\mathcal {A}}, \qquad \forall \ i\in \mathcal {I}, \quad t=0,\dots ,T-1\ . \end{aligned}$$
(26b)
\(\square\)
Proof of Proposition 3
The situation, in which a set of non-member countries strategically choose emission abatement levels such as to minimize their own domestic costs is similar to the second stage of the coalition formation game, as discussed in Sect. 5 and Proposition 6. The only difference is that the coalition \(\mathcal {C}\) is following an exogenously given emission abatement paths instead of strategically reacting to the emission abatement choices of all non-member countries \(i \notin \mathcal {C}\). Thus, existence and uniqueness of the subgame perfect equilibrium can be shown perfectly analogously to the proof of Proposition 6 by assuming an exogenously given aggregate emission abatement path \(A^{\mathcal {C}}_t\) of the coalition.
Thus, we directly obtain the following system of first-order linear difference equations for the aggregated emission abatement levels of non-member countries \(A^{\mathcal {NC}}_t = \sum _{i \notin \mathcal {C}} a_t^i\) and the stock of aggregated cumulative emissions \(s_t\) for some exogenously given path of aggregate emission abatement \(A^\mathcal {C}_t\) of the coalition \(\mathcal {C}\):
$$\begin{aligned} A_{t+1}^\mathcal {NC}&= \left( \frac{1}{\delta }+\Gamma ^\mathcal {NC} \right) A_{t}^\mathcal {NC} -\Gamma ^\mathcal {NC} s_t - \Gamma ^\mathcal {NC}\left( \mathcal {E} - A_t^\mathcal {C}\right) , \end{aligned}$$
(27a)
$$\begin{aligned} s_{t+1}&= -A_t^\mathcal {NC} + s_t +\mathcal {E} - A_t^\mathcal {C}\ . \end{aligned}$$
(27b)
Introducing the matrix M:
$$\begin{aligned} M = \begin{pmatrix} \frac{1}{\delta } + \Gamma ^\mathcal {NC} &{} -\Gamma ^\mathcal {NC}\\ -1 &{} +1 \end{pmatrix}, \end{aligned}$$
(28)
we rewrite the system () in matrix form:
$$\begin{aligned} \begin{pmatrix} A_{t+1}^\mathcal {NC}\\ s_{t+1} \end{pmatrix} = M \cdot \begin{pmatrix} A_{t}^\mathcal {NC}\\ s_{t} \end{pmatrix} + \begin{pmatrix} - \Gamma ^\mathcal {NC} \left( \mathcal {E}-A^\mathcal {C}_t\right) \\ \mathcal {E}-A^\mathcal {C}_t \end{pmatrix}\ . \end{aligned}$$
(29)
The general solution of the matrix equation (29) is given by:
$$\begin{aligned} \begin{pmatrix} A_{t}^\mathcal {NC}\\ s_{t} \end{pmatrix} = \begin{pmatrix} \bar{A}^\mathcal {NC}_t\\ \bar{s}_t \end{pmatrix} + B_1(T) \nu _1 \lambda _1^t + B_2(T) \nu _2 \lambda _2^t, \end{aligned}$$
(30)
where \(\bar{A}^\mathcal {NC}_t\) and \(\bar{s}_t\) denote particular solutions to (29),Footnote 27\(\lambda _i\) are the eigenvalues and \(\nu _i\) the eigenvectors of the matrix M, and \(B_i(T)\) are constants determined by the initial and terminal conditions of the stock and the emission abatement levels (\(i=1,2\)).
The particular solutions are given by:
$$\begin{aligned} \begin{pmatrix} \bar{A}^\mathcal {NC}_t\\ \bar{s}_t \end{pmatrix} = \sum _{t'=0}^{t-1} M^{t'} \cdot \begin{pmatrix} - \Gamma ^\mathcal {NC} \left( \mathcal {E}-A^\mathcal {C}_{t'}\right) \\ \mathcal {E}-A^\mathcal {C}_{t'} \end{pmatrix}\ . \end{aligned}$$
(31)
In addition, for the matrix M we derive the following eigenvalues \(\lambda _i\) (\(i=1,2\)):
$$\begin{aligned} \lambda _1&= \frac{1+\delta \left( 1+\Gamma ^\mathcal {NC}\right) -\sqrt{\left[ 1+\delta \left( 1+\Gamma ^\mathcal {NC}\right) \right] ^2-4\delta }}{2\delta }, \end{aligned}$$
(32a)
$$\begin{aligned} \lambda _2&= \frac{1+\delta \left( 1+\Gamma ^\mathcal {NC}\right) +\sqrt{\left[ 1+\delta \left( 1+\Gamma ^\mathcal {NC}\right) \right] ^2-4\delta }}{2\delta }, \end{aligned}$$
(32b)
and eigenvectors (\(i=1,2\)):
$$\begin{aligned} \nu _1&= \left\{ 1-\lambda _1, 1 \right\} , \end{aligned}$$
(33a)
$$\begin{aligned} \nu _2&= \left\{ 1-\lambda _2, 1 \right\} \ . \end{aligned}$$
(33b)
Inserting into Eq. (30) yields:
$$\begin{aligned} A_{t}^\mathcal {NC}&= \bar{A}^\mathcal {NC}_t + B_1(T)(1-\lambda _1)\lambda _1^t + B_2(T)(1-\lambda _2)\lambda _2^t, \end{aligned}$$
(34a)
$$\begin{aligned} s_{t}&= \bar{s}_t + B_1(T) \lambda _1^t + B_2(T) \lambda _2^t \end{aligned}$$
(34b)
The constants \(B_i(T)\) (\(i=1,2\)) are derived from the initial stock \(s_0\) and the terminal condition \(A_{T}^\mathcal {NC} = 0\), which implies
$$\begin{aligned} B_1(T)&= - \frac{\bar{A}^\mathcal {NC}_T + (s_0-\bar{s}_0)(1-\lambda _2)\lambda _2^{T}}{(1-\lambda _1) \lambda _1^T - (1-\lambda _2) \lambda _2^T}, \end{aligned}$$
(35a)
$$\begin{aligned} B_2(T)&= \frac{\bar{A}^\mathcal {NC}_T + (s_0-\bar{s}_0)(1-\lambda _1)\lambda _1^{T}}{(1-\lambda _1) \lambda _1^T - (1-\lambda _2) \lambda _2^T}\ . \end{aligned}$$
(35b)
The individual countries’ abatement levels in the subgame perfect Nash equilibrium are given by:
$$\begin{aligned} a_T^i&= 0, \qquad \forall \ i \in \mathcal {I}, \end{aligned}$$
(36a)
$$\begin{aligned} a_t^i&= \frac{\gamma _i}{\Gamma ^\mathcal {NC}} A^\mathcal {NC}_{t}, \qquad \forall \ i\notin C, \quad t=0,\dots ,T-1\ . \end{aligned}$$
(36b)
\(\square\)
Proof of Proposition 4
First, note that if the RS is able to incentivize all member countries \(i \in \mathcal {C}\) to implement the aspired abatement paths \(\left\{ \tilde{a}_t^i\right\} _{t=0,\dots ,T}^{i \in \mathcal {C}}\) we can use Proposition 3 to determine the emission abatement paths \(\left\{ \check{a}_t^i\right\} _{t=0,\dots ,T}^{i \notin \mathcal {C}}\) for all non-member countries \(i \notin \mathcal {C}\) in the subgame perfect Nash equilibrium. Thus, it suffices to show that given these emission abatement paths of non-member countries \(\left\{ \check{a}_t^i\right\} _{t=0,\dots ,T}^{i \notin \mathcal {C}}\), there exists a RS that implements the aspired abatement paths \(\left\{ \tilde{a}_t^i\right\} _{t=0,\dots ,T}^{i \in \mathcal {C}}\) for all coalition members \(i \in \mathcal {C}\) as a subgame perfect Nash equilibrium. For further use, we define the aggregated emission abatement level of all non-member countries \(i \notin \mathcal {C}\) in period t in the subgame perfect Nash equilibrium by \(\check{A}_t^\mathcal {NC} = \sum _{i \notin \mathcal {C}} \check{a}_t^i\).
To prove this, we assume that a set of countries \(\mathcal {C}\) has joined a feasible RS characterized by a weighting scheme \(\left\{ \lambda _t^i\right\} _{t=0,\dots ,T-1}^{i \in \mathcal {C}}\) and a sequence of refunds \(\{R_t\}_{t=0,\dots ,T-1}\) by paying an initial fee \(f_0^i\). We shall analyze the subgame perfect Nash equilibria of the RS by backward induction. In every step of the backward induction, we show that
-
1.
the objective function of each country i is strictly concave,
-
2.
there exists a feasible weighting scheme \(\{\tilde{\lambda }_t^i\}^{i \in \mathcal {C}}\) and a feasible refund \(\tilde{R}_t\) such that the aspired abatement levels \(\{\tilde{a}_t^i\}^{i \in \mathcal {C}}\) are consistent with the necessary and sufficient conditions of the subgame perfect Nash equilibrium of the subgame starting in period t and
-
3.
the aspired abatement levels \(\{\tilde{a}_t^i\}^{i \in \mathcal {C}}\) are the unique solution solving the necessary and sufficient conditions of subgame perfection of the subgame starting in period t,
given the aspired abatement levels \(\{\tilde{a}_{t+1}^i\}^{i \in \mathcal {C}}\) constitute the unique subgame perfect Nash equilibrium outcome of the subgame starting in period \(t+1\).
Assuming that there exists a unique subgame perfect equilibrium for the subgame starting in period \(t+1\) with a stock of cumulative greenhouse gas emissions \(s_{t+1}\), for all countries \(i \in \mathcal {C}\), we denote country i’s equilibrium payoff for this subgame by \(W^i_{t+1}(s_{t+1})\). Then country i’s best response in period t, \(\bar{a}_t^i\), is determined by the solution of the optimization problem
$$\begin{aligned} V_t^i(s_t)|A_t^{-i} = \max \limits _{a_t^i} \left\{ \delta W_{t+1}^i(s_{t+1}) -\frac{\alpha _i}{2}(a_t^i)^2 - \frac{\beta _i}{2}s_t^2 + r^i_t\right\} , \end{aligned}$$
(37)
subject to Eq. (3), \(W_{T+1}^i(s_{T+1})\equiv 0\), and given the sum of the abatement efforts of all other countries \(A_t^{-i} = \sum _{j\ne i}a_t^j\). Differentiating Eq. (37) with respect to \(a^i_t\) and setting it equal to zero yields
$$\begin{aligned} \alpha _i \bar{a}_t^i = -\delta {W_{t+1}^i}' (\bar{s}_{t+1})+\left. \frac{\partial r^i_t}{\partial a^i_t}\right| _{a^i_t=\bar{a}^i_t}\ \end{aligned}$$
(38)
where \(\bar{s}_{t+1} = s_t+\mathcal {E} - \bar{a}_t^i - A_t^{-i}\) and
$$\begin{aligned} \frac{\partial r^i_t}{\partial a^i_t} = {\left\{ \begin{array}{ll} \lambda _t^i R_t \displaystyle \frac{A^{\mathcal {C}-i}_t}{(a^i_t+A^{\mathcal {C}-i}_t)^2}\ , \quad &{}t=1,\dots ,T-1,\\ 0, \quad &{}t=T\ . \end{array}\right. } \end{aligned}$$
(39)
Differentiating w.r.t. \(s_t\) and applying the envelope theorem yields
$$\begin{aligned} -{V_t^i}'(s_t)|A_t^{-i} = \beta _i s_t-\delta {W_{t+1}^i}'(s_{t+1})\ . \end{aligned}$$
(40)
Starting with period \(t=T\), we first note that the maximization problem of all countries is strictly concave, as \(W_{T+1}(s_{T+1})\equiv 0\) and \(r_T = f_T/|\mathcal {C}|\). Thus, Eq. (38) characterizes the best response for all countries \(i \in \mathcal {C}\), which is given by \(\bar{a}_{T}^i = 0\) independently of the abatement choices of all other countries. As a consequence \({\hat{a}_T^i}=0\) for all \(i \in \mathcal {C}\) is the subgame perfect Nash equilibrium of the game starting in period T and is also the aspired abatement level in period T, as \(\tilde{a}^i_T=0\) for all \(i \in \mathcal {C}\) for all feasible coalition abatement paths. Then, the equilibrium pay-off is given by \(W^i_T(s_T)=V^i_T(s_T)|\hat{A}^{-i}_T\), which is strictly concave:
$$\begin{aligned} W^i_T(s_T) = -\frac{\beta _i}{2}s_T^2 + \frac{f_T}{|\mathcal {C}|} \qquad \Rightarrow \qquad W_{T}''(s_T) = -\beta _i\ . \end{aligned}$$
(41)
Now, we analyze the subgame starting in period t assuming that their exists a weighting scheme \(\{\tilde{\lambda }_{t'}^i\}_{{t'}=t,\dots ,T-1}^{i \in \mathcal {C}}\) and a sequence of refunds \(\left\{ \tilde{R}_{t'}\right\} _{{t'}=t,\dots ,T-1}\) such that the outcome of the unique subgame perfect Nash equilibrium of the subgame starting in period \(t+1\) coincides with the aspired coalition abatement paths \(\left\{ \tilde{a}_{t'}^i\right\} _{{t'}=t+1,\dots ,T}^{i \in \mathcal {C}}\). In addition, we assume that \(W_{t+1}^i(s_{t+1})\) is strictly concave. Then, also the optimization problem of country \(i \in \mathcal {C}\) in period t is strictly concave
$$\begin{aligned} \delta {W_{t+1}^i}''(s_{t+1}) - \alpha _i + \frac{\partial ^2 r^i_t}{(\partial a^i_t)^2}< 0\ . \end{aligned}$$
(42)
As a consequence, there exists a unique best response \(\bar{a}^i_t\) for all countries \(i \in \mathcal {C}\) given the emission abatements of all other countries \(j \ne i\), which is given implicitly by (38):
$$\begin{aligned} \alpha _i \bar{a}^i_t - \lambda _t^i R_t \frac{A^{\mathcal {C}-i}_t}{(\bar{a}^i_t+A^{\mathcal {C}-i}_t)^2} = -\delta {W_{t+1}^i}' (\bar{s}_{t+1})\ . \end{aligned}$$
(43)
As, by assumption, \(-{W^i_{t'}}'(s_{t'})=-{V^i_{t'}}'(s_{t'})|\hat{A}_{t'}^{-i}\) for all \(t'\ge t+1\) we can exploit Eq. (40) to obtain the following Euler equation:
$$\begin{aligned} \alpha _i \bar{a}^i_t - \lambda _{t}^i R_t \frac{A^{\mathcal {C}-i}_t}{(\bar{a}^i_t+A^{\mathcal {C}-i}_t)^2} = \delta \beta _i \bar{s}_{t+1} + \delta \alpha _i \tilde{a}_{t+i}^i -\delta \tilde{\lambda }_{t+1}^i \tilde{R}_{t+1} \frac{\tilde{A}_{t+1}^{\mathcal {C}-i}}{(\tilde{A}^\mathcal {C}_{t+1})^2}\ . \end{aligned}$$
(44)
Inserting \(\bar{s}_{t+1} = s_t + \mathcal {E}-\bar{a}_t^i - A_{t}^{\mathcal {C}-i}-\check{A}_t^{\mathcal {NC}}\) yields:
$$\begin{aligned} \alpha _i \bar{a}^i_t + \delta \beta _i (\bar{a}_t^i + A_{t}^{\mathcal {C}-i}) - \lambda _t^i R_t \frac{A^{\mathcal {C}-i}_t}{(\bar{a}^i_t+A^{\mathcal {C}-i}_t)^2} = \tilde{C}_t^i, \end{aligned}$$
(45)
with
$$\begin{aligned} \tilde{C}_t^i = \delta \beta _i \left( s_t+\mathcal {E}-\check{A}_t^{\mathcal {NC}}\right) + \delta \alpha _i \tilde{a}_{t+i}^i -\delta \tilde{\lambda }^i_{t+1} \tilde{R}_{t+1} \frac{\tilde{A}_{t+1}^{\mathcal {C}-i}}{\left( \tilde{A}^\mathcal {C}_{t+1}\right) ^2}\ . \end{aligned}$$
(46)
First, we show that there exist unique \(\tilde{\lambda }_t^i\) and \(\tilde{R}_t\) such that choosing the aspired coalition abatement level \(\tilde{a}_t^i\) is an equilibrium strategy for all countries \(i \in \mathcal {C}\). Inserting aspired abatement levels \(\tilde{a}_t^i\) and rearranging Eq. (45), we obtain
$$\begin{aligned} \tilde{\lambda }_t^i \tilde{R}_t = \left( \tilde{A}^\mathcal {C}_t\right) ^2 \left( \alpha _i \frac{\tilde{a}_t^i}{\tilde{A}_t^{\mathcal {C}-i}} + \delta \beta _i \frac{\tilde{A}^\mathcal {C}_t}{\tilde{A}_t^{\mathcal {C}-i}} -\frac{\tilde{C}_t^i}{\tilde{A}_t^{\mathcal {C}-i}}\right) \ . \end{aligned}$$
(47)
Taking into account that the weighting scheme adds up to one, i.e., \(\sum _{j \in \mathcal {C}} \tilde{\lambda }_t^j\frac{\tilde{a}_t^j}{\tilde{A}_t^\mathcal {C}} = 1\), yields
$$\begin{aligned} \tilde{R}_t&= \tilde{A}^\mathcal {C}_t \sum _{j \in \mathcal {C}} \left[ \tilde{a}_t^j\left( \alpha _j \frac{\tilde{a}_t^j}{\tilde{A}_t^{\mathcal {C}-j}} + \delta \beta _j \frac{\tilde{A}^\mathcal {C}_t}{\tilde{A}_t^{\mathcal {C}-j}} -\frac{\tilde{C}_t^j}{\tilde{A}_t^{\mathcal {C}-j}}\right) \right] \ , \end{aligned}$$
(48a)
$$\begin{aligned} \tilde{\lambda }_t^i&= \frac{\tilde{A}_t^\mathcal {C}\left( \alpha _i \frac{\tilde{a}_t^i}{\tilde{A}_t^{\mathcal {C}-i}} + \delta \beta _i \frac{\tilde{A}^\mathcal {C}_t}{\tilde{A}_t^{\mathcal {C}-i}} -\frac{\tilde{C}_t^i}{\tilde{A}_t^{\mathcal {C}-i}}\right) }{\sum _{j \in \mathcal {C}} \left[ \tilde{a}_t^j\left( \alpha _j \frac{\tilde{a}_t^j}{\tilde{A}_t^{\mathcal {C}-j}} + \delta \beta _j \frac{\tilde{A}^\mathcal {C}_t}{\tilde{A}_t^{\mathcal {C}-j}} -\frac{\tilde{C}_t^j}{\tilde{A}_t^{\mathcal {C}-j}}\right) \right] }\ . \end{aligned}$$
(48b)
We now show that the aspired coalition abatement levels \(\tilde{a}_t^i\) are the unique solution to the Euler equations of all countries \(i \in \mathcal {C}\) given the weighting scheme \(\left\{ \tilde{\lambda }_t^i\right\} ^{i \in \mathcal {C}}\) and the refund \(\tilde{R}_t\). To this end, we express equation (45) in terms of \(a_t^i\) and \(A^\mathcal {C}_t\) and solve for \(a_t^i\):
$$\begin{aligned} a_t^i = A^\mathcal {C}_t \underbrace{\frac{\tilde{\lambda }_t^i \tilde{R}_t + \tilde{C}_t^i A_t^\mathcal {C} - \delta \beta _i \left( A_t^\mathcal {C}\right) ^2}{\tilde{\lambda }_t^i \tilde{R}_t + \alpha _i \left( A_t^\mathcal {C}\right) ^2}}_{\equiv h_t^i(A^\mathcal {C}_t)} = A^\mathcal {C}_t h_t^i(A^\mathcal {C}_t)\ . \end{aligned}$$
(49)
Summing-up over all countries \(i \in \mathcal {C}\) yields
$$\begin{aligned} \sum _{i \in \mathcal {C}} h_t^i(A^\mathcal {C}_t) = 1, \end{aligned}$$
(50)
which has to hold for \(A^\mathcal {C}_t=\tilde{A}_t^\mathcal {C}\) and is a necessary condition for a Nash equilibrium. Differentiating \(h_t^i(A^\mathcal {C}_t)\) with respect to \(A^\mathcal {C}_t\), we obtain:
$$\begin{aligned} {h_t^i}'(A^\mathcal {C}_t) = \frac{\tilde{\lambda }_t^i \tilde{R}_t \tilde{C}_t^i -2(\alpha _i+\delta \beta _i)\tilde{\lambda }_t^i \tilde{R}_t A^\mathcal {C}_t - \alpha _i \tilde{C}_t^i \left( A_t^\mathcal {C}\right) ^2}{\left[ \tilde{\lambda }_t^i \tilde{R}_t+ \alpha _i \left( A_t^\mathcal {C}\right) ^2\right] ^2}\ . \end{aligned}$$
(51)
Seeking the roots of \({h_t^i}'(A^\mathcal {C}_t)\) yields
$$\begin{aligned} {h_t^i}' (A^\mathcal {C}_t)= 0&\Leftrightarrow \underbrace{\tilde{\lambda }_t^i \tilde{R}_t \tilde{C}_t^i}_{\equiv x> 0} - \underbrace{2(\alpha _i+\delta \beta _i)\tilde{\lambda }_t^i \tilde{R}_t}_{\equiv y> 0} A^\mathcal {C}_t - \underbrace{\alpha _i \tilde{C}_t^i}_{\equiv z > 0} \left( A_t^\mathcal {C}\right) ^2 = 0, \end{aligned}$$
(52)
$$\begin{aligned}&\Leftrightarrow x - y A^\mathcal {C}_t -z \left( A^\mathcal {C}_t\right) ^2 = 0, \end{aligned}$$
(53)
$$\begin{aligned}&\Leftrightarrow A^\mathcal {C}_t = -\frac{y\pm \sqrt{y^2+4xz}}{2z}\ . \end{aligned}$$
(54)
Thus, for every \(h_t^i(A^\mathcal {C}_t)\) there exist one positive collective abatement level \(\bar{A}_t^i\) such that \({h_t^i}' (\bar{A}_t^i) = 0\). In addition it holds (taking into account Eq. (47)):
$$\begin{aligned} h_t^i (0)&= 1,&\quad h_t^i (\tilde{A}_t^\mathcal {C})&= \frac{\alpha _i \tilde{a}_t^i \tilde{A}^\mathcal {C}_t + \tilde{\lambda }_t^i \tilde{R}_t \left( 1-\frac{\tilde{A}_t^{\mathcal {C}-i}}{\tilde{A}_t^\mathcal {C}}\right) }{\tilde{\lambda }_t^i \tilde{R}_t + \alpha _i \left( \tilde{A}_t^\mathcal {C}\right) ^2} \in [0,1], \tilde{A}_t^\mathcal {C} \ne 0 \end{aligned}$$
(55a)
$$\begin{aligned} {h_t^i}' (0)&= \tilde{C}_t^i > 0 ,&\quad {h_t^i}' (\tilde{A}_t^\mathcal {C})&< 0\ . \end{aligned}$$
(55b)
Focusing attention to the positive half-space \(A^\mathcal {C}_t \ge 0\), all \(h_t^i(A^\mathcal {C}_t)\) start at 1 for \(A^\mathcal {C}_t=0\). In addition, all \(h_t^i(A^\mathcal {C}_t)\) exhibit a unique local extremum at \(\bar{A}_t^i > 0\). As \(h_t^{i'}(A^\mathcal {C}_t)\) is increasing at \(A^\mathcal {C}_t=0\), the local extremum is a local maximum. This implies that all \(h_t^i(A^\mathcal {C}_t)\) are increasing until \(\bar{A}_t^i > 0\) and decreasing afterwards. This also implies that \(\tilde{A}^\mathcal {C}_t > \bar{A}_t^i\) for all \(i \in \mathcal {C}\), because \(h^i_t(\tilde{A}_t^\mathcal {C}) < 1\), which can only happen for values \(A^\mathcal {C}_t > \bar{A}_t^i\), as all \(h_t^i(A^\mathcal {C}_t)\) start at 1 and further increase until the local extremum at \(\bar{A}_t^i\). As \(\tilde{A}_t^\mathcal {C} > \bar{A}_t^i\), this, in turn, implies that at \(\tilde{A}_t^\mathcal {C}\), all \(h_t^i(\tilde{A}_t^\mathcal {C}) \in [0,1]\) are monotonically decreasing.Footnote 28 As a consequence, there exists no other value \(A_t'\) such that \(\sum _{i \in \mathcal {C}} h_t^i(A_t') = 1\). Then, only the aspired coalition abatement levels \(\tilde{a}_t^i\) solve the Euler equations of all countries \(i \in \mathcal {C}\) simultaneously for the weighting scheme \(\tilde{\lambda }_t^i\) and the refund \(\tilde{R}_t\).
Differentiating (40) with respect to \(s_t\), we obtain
$$\begin{aligned} {V_t^i}''(s_t)|A_t^{-i} = \delta {W_{t+1}^i}''(\bar{s}_{t+1})-\beta _i\ . \end{aligned}$$
(56)
As \({W_t^i}(s_t) = {V_t^i}(s_t)|\hat{A}_t^{-i}\), this implies that the equilibrium pay-off \(W^i_{t}(s_t)\) is strictly concave for all countries \(i \in \mathcal {C}\).
Working backwards to \(t=1\) yields a the unique subgame perfect Nash equilibrium outcome that is given by the aspired coalition abatement levels \(\left\{ \tilde{a}_t^i\right\} _{t=0,\dots ,T}^{i \in \mathcal {C}}\), the abatement path \(\left\{ \check{a}_t^i\right\} _{t=0,\dots ,T}^{i \notin \mathcal {C}}\) of all non-members countries \(i \notin \mathcal {C}\) and the corresponding path of cumulative greenhouse gas emissions \(\{s_t\}_{t=0,\dots ,T}\) .
It remains to show that the RS is feasible, i.e., the weighting scheme \(\{\tilde{\lambda }_t^i\}_{i=1}^n\) and the refund \(\tilde{R}_t\) are non-negative for all \(t=0,\dots ,T-1\), for all feasible coalition abatement paths \(\left\{ \tilde{a}_t^i\right\} _{t=0,\dots ,T}^{i \in \mathcal {C}}\). As \({W_t^i}(s_t) = {V_t^i}(s_t)|\hat{A}_t^{-i}\), we can consecutively apply Eq. (40), insert into Eq. (38) and evaluate in the subgame perfect Nash equilibrium:
$$\begin{aligned} \alpha _i \tilde{a}_t^i - \tilde{\lambda }_t^i \tilde{R}_t \frac{\tilde{A}_t^{\mathcal {C}-i}}{\left( \tilde{A}^\mathcal {C}_t\right) ^2} = \delta \beta _i \sum _{\tau =t+1}^{T} \delta ^{\tau -(t+1)} s_\tau \ ,\quad t=0,\dots ,T-1\ . \end{aligned}$$
(57)
The corresponding equation in the decentralized solution yields:
$$\begin{aligned} \alpha _i \hat{a}_t^i = \delta \beta _i \sum _{\tau =t+1}^{T} \delta ^{\tau -(t+1)} \hat{s}_\tau ,\quad t=0,\dots ,T-1\ . \end{aligned}$$
(58)
By construction \(\tilde{a}_t^i > \hat{a}_t^i\) for all \(i \in \mathcal {C}\) and \(t=0,\dots ,T-1\). As a consequence, it also holds that \(\hat{s}_t > s_t\) for all \(t=0,\dots ,T\). This, in turn, implies that \(\{\tilde{\lambda }_t^i\}_{t=0,\dots ,T-1}^{i \in \mathcal {C}} > 0\) and \(\left\{ \tilde{R}_t\right\} _{t=0,\dots ,T-1} > 0\). \(\square\)
Proof of Proposition 5
The first part of Proposition directly follows from Eq. (14).
To show that the any feasible RS can always be implemented as a Pareto improvement over the decentralized solution, we introduce the following abbreviation: Denote the net present value of the discounted sum of abatement costs and environmental damage costs of country i in the decentralized solution and the RS by \(\hat{K}_i\) and \(\tilde{K}_i\), respectively:
$$\begin{aligned} \hat{K}_i&= \sum _{t=0}^T \left[ \frac{\alpha _i}{2}\left( \hat{a}_t^i\right) ^2 + \frac{\beta _i}{2}\hat{s}_t^2\right] , \end{aligned}$$
(59a)
$$\begin{aligned} \tilde{K}_i&= \sum _{t=0}^T \left[ \frac{\alpha _i}{2}\left( \tilde{a}_t^i\right) ^2 + \frac{\beta _i}{2} \tilde{s}_t^2\right] \ . \end{aligned}$$
(59b)
In addition, let \(\tilde{f}_0^i\) be the net present value of the discounted sum of refunds that country \(i \in \mathcal {C}\) receives in the RS:
$$\begin{aligned} \tilde{f}_0^i = \sum _{t=1}^{T-1} \frac{\tilde{\lambda }_i \tilde{R}_t}{(1+\rho )^t} \left( \frac{a^i_t}{\sum _{j \in \mathcal {C}} a^j_t} \right) . \end{aligned}$$
(59c)
By construction, all countries \(i \in \mathcal {C}\) are better off in the RS than in the decentralized solution if their initial fees were equal to zero. The reason is that environmental damage costs are smaller under the refunding scheme and abatement costs minus refunds are smaller compared to the decentralized solution. Otherwise, it would not have been in the countries’ best interest to choose the aspired coalition abatement levels. Define the difference in terms of net present value between the RS and the decentralized solution by \(\hat{f}_0^i\):
$$\begin{aligned} \hat{f}_0^i = \hat{K}_i - \tilde{K}_i + \tilde{f}_0^i > 0\ . \end{aligned}$$
(60)
Note that \(\hat{f}_0^i\) is the initial fee that would leave country \(i \in \mathcal {C}\) indifferent between the RS and the decentralized solution. Summing-up over all countries \(i \in \mathcal {C}\), we obtain:
$$\begin{aligned} \sum _{i \in \mathcal {C}} \hat{f}_0^i = \sum _{i \in \mathcal {C}} \left[ \hat{K}_i - \tilde{K}_i + \tilde{f}_0^i\right] = \sum _{i \in \mathcal {C}} \left[ \hat{K}_i - \tilde{K}_i\right] + \tilde{f}_0 > \tilde{f}_0\ . \end{aligned}$$
(61)
Thus, it is always possible to find a set of initial fees \(f_0^i\) such that \(\sum _{i \in \mathcal {C}} f_0^i = \tilde{f}_0\) and, in addition, \(f_0^i < \hat{f}_0^i\) for all \(i \in \mathcal {C}\). \(\square\)
Proof of Proposition 6
In line with the literature, we assume that in the second stage both the modesty parameter \(\mu\) and the membership structure are given and common knowledge. Then, the coalition acts as one player in the non-cooperative game, in which the coalition and all other non-member countries choose emission abatement levels to maximize their objective. We assume that in each period \(t=0,\dots ,T\) the previous emission abatement choices of all players are common knowledge before all players simultaneously decide on emission abatement levels in period t. The subgame perfect Nash equilibrium is derived by backward induction.
For a given modesty parameter \(\mu\) and a given membership structure \(\mathcal {C}\), the coalition is supposed to set emission abatement levels such as to solve optimization problem (15) subject to the equation of motion for aggregate cumulative emissions (3) and given the emission abatement levels of all non-member countries. To solve the problem recursively, we introduce the value function:
$$\begin{aligned} V_t^\mathcal {C}(s_t)|A_t^{-\mathcal {C}} = \max _{\{a_t^i\}_{i\in C}} \left\{ \delta W_{t+1}^C(s_{t+1}) - \sum _{i\in C}\left[ \frac{\alpha _i}{2}(a_t^i)^2+\mu \frac{\beta _i}{2}s_t^2\right] \right\} , \end{aligned}$$
(62)
where \(A_t^{-\mathcal {C}}\) denotes the vector of emission abatement levels of all non-member countries, \(V_t^\mathcal {C}(s_t)\) represents the negative of the total coalition costs accruing from period t onwards discounted to period t and \(W_{t+1}^C(s_{t+1})\) is the coalition’s equilibrium pay-off of the subgame starting in period \(t+1\) conditional on the stock of accumulated GHG gases \(s_{t+1}\).
All non-member countries \(i \notin \mathcal {C}\) seek to minimize the net present value of their own total domestic costs (6) subject to stock dynamics of cumulative global GHG emissions (3) and given the emission abatement levels of all other countries. Again, we introduce the value function:
$$\begin{aligned} V_t^i(s_t)|{A_t^{-i}} = \max _{\{a_t^i\}} \left\{ \delta W_{t+1}^i(s_{t+1}) - \left[ \frac{\alpha _i}{2}(a_t^i)^2+\frac{\beta _i}{2}s_t^2\right] \right\} ,\quad i\notin \mathcal {C}, \end{aligned}$$
(63)
where \(A_t^{-i}\) denotes the vector of emission abatement levels of all other countries \(j \ne i\), \(V_t^i(s_t)\) represents the negative of the total country i’ costs accruing from period t onwards discounted to period t and \(W_{t+1}^i(s_{t+1})\) is the country i’s equilibrium pay-off of the subgame starting in period \(t+1\) conditional on the stock of accumulated GHG gases \(s_{t+1}\).
Differentiating the value functions (62) and (63) with respect to \(a^i_t\) and setting them equal to zero, we derive the following first-order conditions:
$$\begin{aligned} \alpha _i a^i_t&= -\delta {W^{\mathcal {C}}_{t+1}}'(s_{t+1}),\qquad \forall \ i \in \mathcal {C},\quad t=0,\dots ,T, \end{aligned}$$
(64a)
$$\begin{aligned} \alpha _i a^i_t&= -\delta {W^{i}_{t+1}}'(s_{t+1}),\qquad \forall \ i \notin \mathcal {C},\quad t=0,\dots ,T\ . \end{aligned}$$
(64b)
The optimization problems of the coalition and all non-member countries in period t are strictly concave if
$$\begin{aligned}&\delta {W_{t+1}^{\mathcal {C}}}''(s_{t+1}) - \alpha _i < 0,\qquad \forall \ i \in \mathcal {C},\quad t=0,\dots ,T, \end{aligned}$$
(65a)
$$\begin{aligned}&\delta {W_{t+1}^{i}}''(s_{t+1}) - \alpha _i < 0,\qquad \forall \ i \notin \mathcal {C},\quad t=0,\dots ,T, \end{aligned}$$
(65b)
in which case the first-order conditions () implicitly define the coalition’s and all non-member countries’ unique best response functions.
In addition, differentiating the value functions (62) and (63) with respect to \(s_t\) and applying the envelope theorem yields
$$\begin{aligned} -{V_{t}^{\mathcal {C}}}'(s_t)|A_t^{-\mathcal {C}}&= \mu \mathcal {B}^\mathcal {C} s_t - \delta {W_{t+1}^{\mathcal {C}}}' (s_{t+1}),\qquad \forall \ i \in \mathcal {C},\quad t=0,\dots ,T, \end{aligned}$$
(66a)
$$\begin{aligned} -{V_{t}^{i}}'(s_t)|A_t^{-i}&= \beta _i s_t - \delta {W_{t+1}^{i}}' (s_{t+1}),\qquad \forall \ i \notin \mathcal {C},\quad t=0,\dots ,T, \end{aligned}$$
(66b)
where we have introduced the notation \(\mathcal {B}^\mathcal {C} = \sum _{i\in \mathcal {C}} \beta _i\).
Starting from \(W^\mathcal {C}_{T+1}(s_{T+1}) \equiv 0 \equiv W^i_{T+1}(s_{T+1})\) for all \(i \in \mathcal {I}\), implying that the objective function of the optimization problem of the coalition and all non-member countries is strictly concave. As a consequence, Eq. () characterize the coalition’s and all non-member countries’ best response, which is given by \(\bar{a}^i_T=0\) for all \(I \in \mathcal {I}\) independently of the emission abatement choices of all other countries. As a consequence, \(\tilde{a}^i_T=0\) for all \(i \in \mathcal {C}\) and \(\check{a}^i_T=0\) for all \(i \notin \mathcal {C}\) is the unique and symmetric Nash equilibrium for the subgame starting in period T given the stock of cumulative greenhouse gas emissions \(s_T\). The equilibrium pay-offs are given by \(W^\mathcal {C}_T(s_T)= V^\mathcal {C}_T(s_T)|\hat{A}^{-\mathcal {C}}_T\) for the coalition and \(W^i_T(s_T)=V^i_T(s_T)|\hat{A}^{-i}_T\) and are strictly concave:
$$\begin{aligned} W^\mathcal {C}_T(s_T)&= -\mu \frac{\mathcal {B}^\mathcal {C}}{2}s_T^2 \qquad \Rightarrow \qquad {W_{T}^\mathcal {C}}''(s_T) = -\mu \mathcal {B}^\mathcal {C}, \end{aligned}$$
(67a)
$$\begin{aligned} W^i_T(s_T)&= -\frac{\beta _i}{2}s_T^2 \qquad \Rightarrow \qquad {W_{T}^i}''(s_T) = -\beta _i, \qquad \forall \ i \notin \mathcal {C}\ . \end{aligned}$$
(67b)
As a consequence, the optimization problem of the coalition and all non-member countries is also strictly concave in period T.
Now assume there exists a unique subgame perfect Nash equilibrium for the subgame starting in period \(t+1\) with a stock of greenhouse gas emissions of \(s_{t+1}\) yielding equilibrium pay-offs \(W^\mathcal {C}_{t+1}(s_{t+1})\) and \(W^i_{t+1}(s_{t+1})\) to the coalition and all non-member countries \(i \notin \mathcal {C}\), respectively, with \({W^\mathcal {C}_{t+1}}''(s_{t+1})<0\) and \({W^i_{t+1}}''(s_{t+1})<0\) . Then the optimization problem in period t is strictly concave for the coalition and all non-member countries \(i \notin \mathcal {C}\), implying there exists a unique best response \(\bar{a}^i_t\) for all countries \(i \in \mathcal {I}\) given the emission abatements of all other countries \(j \ne i\), which is given implicitly by
$$\begin{aligned} \alpha _i \bar{a}^i_t&= -\delta {W^{\mathcal {C}}_{t+1}}'(\bar{s}_{t+1}),\qquad \forall \ i \in \mathcal {C}, \end{aligned}$$
(68a)
$$\begin{aligned} \alpha _i \bar{a}^i_t&= -\delta {W^{i}_{t+1}}'(\bar{s}_{t+1})\ ,\qquad \forall \ i \notin \mathcal {C}, \end{aligned}$$
(68b)
where \(\bar{s}_{t+1} = s_t+ \mathcal {E} - \bar{a}_t^i - A_t^{-i}\). As, by assumption, \(-{W^\mathcal {C}_{t'}}'(s_{t'})=-{V^\mathcal {C}_{t'}}'(s_{t'})|\hat{A}_{t'}^{-\mathcal {C}}\) and \(-{W^i_{t'}}'(s_{t'})=-{V^i_{t'}}'(s_{t'})|\hat{A}_{t'}^{-i}\) for all \(t'\ge t+1\), we can exploit conditions () to obtain:
$$\begin{aligned} a_t^i&= \delta \tilde{a}^i_{t+1} + \mu \delta \frac{\mathcal {B}^{\mathcal {C}}}{\alpha _i} \left( s_t + \mathcal {E}- \sum _{j \in \mathcal {I}} a^j_t\right) ,\qquad \forall \ i \in \mathcal {C}, \end{aligned}$$
(69a)
$$\begin{aligned} a_t^i&= \delta \check{a}^i_{t+1} + \delta \gamma _i \left( s_t + \mathcal {E}-\sum _{j \in \mathcal {I}} a^j_t\right) ,\qquad \forall \ i \notin \mathcal {C}\ . \end{aligned}$$
(69b)
Summing up Eq. (69a) over all coalition members \(i \in \mathcal {C}\) and Eq. (69b) over all non-member countries \(i \notin \mathcal {C}\), we obtain the following equations for the aggregate abatement levels \(A^\mathcal {C}_t = \sum _{i \in \mathcal {C}} a^i_t\) and \(A^\mathcal {NC}_t = \sum _{i \notin \mathcal {C}} a^i_t\) of the coalition and all non-member countries, respectively:
$$\begin{aligned} A^\mathcal {C}_t&= \delta \tilde{A}^\mathcal {C}_{t+1} + \mu \delta \mathcal {A}^\mathcal {C} \mathcal {B}^{\mathcal {C}} \left( s_t + \mathcal {E}- A^\mathcal {C}_t - A^\mathcal {NC}_t\right) , \end{aligned}$$
(70a)
$$\begin{aligned} A^\mathcal {NC}_t&= \delta \check{A}^\mathcal {NC}_{t+1} + \delta \Gamma ^\mathcal {NC}\left( s_t + \mathcal {E}- A^\mathcal {C}_t - A^\mathcal {NC}_t\right) , \end{aligned}$$
(70b)
where we have used the abbreviation \(\mathcal {A}^\mathcal {C} = \sum _{i \in \mathcal {C}} 1/\alpha _i\) and \(\Gamma ^\mathcal {NC} = \sum _{i \notin \mathcal {C}} \gamma _i\). Solving this system of equations for \(A^\mathcal {C}_t\) and \(A^\mathcal {NC}_t\), we obtain the aggregate abatement levels of the coalition and non-member countries, respectively, for period t in the subgame perfect Nash equilibrium:
$$\begin{aligned} \tilde{A}^\mathcal {C}_t&= \frac{\delta \left[ \tilde{A}^\mathcal {C}_{t+1}\left( 1+\delta \Gamma ^{\mathcal {NC}}\right) + \mu \mathcal {A}^\mathcal {C} \mathcal {B}^{\mathcal {C}}\left( s_t + \mathcal {E}- \delta \check{A}^\mathcal {NC}_{t+1} \right) \right] }{1+\delta \Gamma ^{\mathcal {NC}}+\mu \delta \mathcal {A}^\mathcal {C} \mathcal {B}^{\mathcal {C}}}, \end{aligned}$$
(71a)
$$\begin{aligned} \check{A}^\mathcal {NC}_t&= \frac{\delta \left[ \check{A}^\mathcal {NC}_{t+1}\left( 1+\mu \delta \mathcal {A}^\mathcal {C} \mathcal {B}^{\mathcal {C}}\right) + \Gamma ^{\mathcal {NC}} \left( s_t + \mathcal {E}- \delta \tilde{A}^\mathcal {C}_{t+1} \right) \right] }{1+\delta \Gamma ^{\mathcal {NC}}+\mu \delta \mathcal {A}^\mathcal {C} \mathcal {B}^{\mathcal {C}}}\ . \end{aligned}$$
(71b)
Inserting \(\tilde{A}^\mathcal {C}_t\) and \(\check{A}^\mathcal {NC}_t\) back into Eq. () yields the unique equilibrium abatement level in period t for all countries \(i \in \mathcal {I}\):
$$\begin{aligned} \tilde{a}_t^i&= \delta \tilde{a}^i_{t+1} + \mu \delta \frac{\mathcal {B}^{\mathcal {C}}}{\alpha _i} \left( s_t + \mathcal {E}- \tilde{A}^\mathcal {C}_t - \check{A}^\mathcal {NC}_t \right) ,\qquad \forall \ i \in \mathcal {C}, \end{aligned}$$
(72a)
$$\begin{aligned} \check{a}_t^i&= \delta \check{a}^i_{t+1} + \delta \gamma _i \left( s_t + \mathcal {E}-\tilde{A}^\mathcal {C}_t - \check{A}^\mathcal {NC}_t \right) ,\qquad \forall \ i \notin \mathcal {C}\ . \end{aligned}$$
(72b)
Differentiating () with respect to \(s_t\), we obtain
$$\begin{aligned} {V_{t}^{\mathcal {C}}}''(s_t)|A_t^{-\mathcal {C}}&= \delta {W_{t+1}^{\mathcal {C}}}'' (s_{t+1}) -\mu \mathcal {B}^\mathcal {C},\qquad \forall \ i \in \mathcal {C}, \end{aligned}$$
(73a)
$$\begin{aligned} {V_{t}^{i}}''(s_t)|A_t^{-i}&= \delta {W_{t+1}^{i}}''(s_{t+1}) - \beta _i,\qquad \forall \ i \notin \mathcal {C}\ . \end{aligned}$$
(73b)
As \({W_t^\mathcal {C}}''(s_t) = {V_t^\mathcal {C}}''(s_t)|\hat{A}_t^{-\mathcal {C}}\) and \({W_t^i}''(s_t) = {V_t^i}''(s_t)|\hat{A}_t^{-i}\), this implies that the equilibrium pay-offs \(W^\mathcal {C}_{t}(s_t)\) and \(W^i_{t}(s_t)\) are strictly concave for the coalition and all non-member countries \(i \notin \mathcal {C}\).
Working backwards until \(t=0\) yields unique sequences of emission abatements \(\{\tilde{a}^i_t\}^T_{t = 0}\) and \(\{\tilde{a}^i_t\}^T_{t = 0}\) for all coalition countries \(i\in \mathcal {C}\) and all non-member countries \(i \notin \mathcal {C}\), respectively, and the corresponding sequence of the stock of cumulative greenhouse gas emissions \(s_t\) (\(t=0,\dots ,T\)) that constitute the unique subgame perfect Nash equilibrium outcome of the second stage of the modest international environmental agreement.
Having established existence and uniqueness of the subgame perfect Nash equilibrium, we now employ Eq. () together with the equation of motion for the stock of aggregated cumulative emissions (3) to derive the following system of first-order linear difference equations:
$$\begin{aligned} A_{t+1}^\mathcal {C}&= \left( \frac{1}{\delta } + \mu \mathcal {A}^\mathcal {C} \mathcal {B}^\mathcal {C} \right) A_t^\mathcal {C} + \mu \mathcal {A}^\mathcal {C} \mathcal {B}^\mathcal {C} A_t^\mathcal {NC} - \mu \mathcal {A}^\mathcal {C} \mathcal {B}^\mathcal {C} s_t - \mu \mathcal {A}^\mathcal {C} \mathcal {B}^\mathcal {C} \mathcal {E}, \end{aligned}$$
(74a)
$$\begin{aligned} A_{t+1}^\mathcal {NC}&= \Gamma ^\mathcal {NC} A_t^\mathcal {C} + \left( \frac{1}{\delta }+\Gamma ^\mathcal {NC} \right) A_{t}^\mathcal {NC} -\Gamma ^\mathcal {NC} s_t - \Gamma ^\mathcal {NC} \mathcal {E}, \end{aligned}$$
(74b)
$$\begin{aligned} s_{t+1}&= - A_t^\mathcal {C} -A_t^\mathcal {NC} + s_t +\mathcal {E}\ . \end{aligned}$$
(74c)
By introducing the abbreviations \(x = \mu \mathcal {A}^\mathcal {C} \mathcal {B}^\mathcal {C}\) and \(y = \Gamma ^\mathcal {NC}\) and the matrix M
$$\begin{aligned} M = \begin{pmatrix} \frac{1}{\delta } + x &{} x &{} -x\\ y &{} \frac{1}{\delta }+y &{} -y \\ -1 &{} -1 &{} +1 \end{pmatrix}, \end{aligned}$$
(75)
we rewrite the system () in matrix form:
$$\begin{aligned} \begin{pmatrix} A_{t+1}^\mathcal {C}\\ A_{t+1}^\mathcal {NC}\\ s_{t+1} \end{pmatrix} = M \cdot \begin{pmatrix} A_{t}^\mathcal {C}\\ A_{t}^\mathcal {NC}\\ s_{t} \end{pmatrix} + \begin{pmatrix} - x \mathcal {E}\\ - y \mathcal {E}\\ \mathcal {E} \end{pmatrix}\ . \end{aligned}$$
(76)
The general solution of the matrix equation (76) is given by:
$$\begin{aligned} \begin{pmatrix} A_{t}^\mathcal {C}\\ A_{t}^\mathcal {NC}\\ s_{t} \end{pmatrix} = \begin{pmatrix} \bar{A}^\mathcal {C}\\ \bar{A}^\mathcal {NC}\\ \bar{s} \end{pmatrix} + B_1(T) \nu _1 \lambda _1^t + B_2(T) \nu _2 \lambda _2^t + B_3(T) \nu _3 \lambda _3^t, \end{aligned}$$
(77)
where \(\bar{A}^\mathcal {C}\), \(\bar{A}^\mathcal {NC}\) and \(\bar{s}\) denote the steady state values of \(A_{t}^\mathcal {C}\), \(A_{t}^\mathcal {NC}\) and \(s_t\), \(\lambda _i\) are the eigenvalues and \(\nu _i\) the eigenvectors of the matrix M, and \(B_i(T)\) are constants determined by the initial and terminal conditions of the stock and the emission abatement levels (\(i=1,\dots ,3\)).
Calculating the steady state values by setting
$$\begin{aligned} A_{t+1}^\mathcal {C}=A_{t}^\mathcal {C} = \bar{A}^\mathcal {C},\quad A_{t+1}^\mathcal {NC}=A_{t}^\mathcal {NC} = \bar{A}^\mathcal {NC}\ ,\quad s_{t+1} = s_t = \bar{s}, \end{aligned}$$
(78)
yields:
$$\begin{aligned} \bar{A}^\mathcal {C}&= \frac{x}{x+y}\mathcal {E} \end{aligned}$$
(79a)
$$\begin{aligned} \bar{A}^\mathcal {NC}&= \frac{y}{x+y}\mathcal {E}\end{aligned}$$
(79b)
$$\begin{aligned} \bar{s}&= \frac{1-\delta }{\delta } \frac{\mathcal {E}}{x+y} \end{aligned}$$
(79c)
In addition, for the matrix M we derive the following eigenvalues \(\lambda _i\) (\(i=1,\dots ,3\)):
$$\begin{aligned} \lambda _1&= \frac{1}{\delta }, \end{aligned}$$
(80a)
$$\begin{aligned} \lambda _2&= \frac{1+\delta +\delta (x+y)-\sqrt{[1+\delta +\delta (x+y)]^2-4\delta }}{2\delta }\ , \end{aligned}$$
(80b)
$$\begin{aligned} \lambda _3&= \frac{1+\delta +\delta (x+y)+\sqrt{[1+\delta +\delta (x+y)]^2-4\delta }}{2\delta }\ , \end{aligned}$$
(80c)
and eigenvectors (\(i=1,\dots ,3\)):
$$\begin{aligned} \nu _1&= \left\{ -1,1,0\right\} ,\end{aligned}$$
(81a)
$$\begin{aligned} \nu _2&= \left\{ \frac{x}{x+y}(1-\lambda _2), \frac{y}{x+y}(1-\lambda _2), 1 \right\} , \end{aligned}$$
(81b)
$$\begin{aligned} \nu _3&= \left\{ \frac{x}{x+y}(1-\lambda _3), \frac{y}{x+y}(1-\lambda _3), 1 \right\} , \end{aligned}$$
(81c)
Inserting into Eq. (77) yields:
$$\begin{aligned} A_{t}^\mathcal {C}&= \bar{A}^\mathcal {C} - B_1(T)\lambda _1^t + \frac{x}{x+y}\left[ B_2(T)(1-\lambda _2)\lambda _2^t + B_3(T)(1-\lambda _3) \lambda _3^t\right] \end{aligned}$$
(82a)
$$\begin{aligned} A_{t}^\mathcal {NC}&= \bar{A}^\mathcal {NC} + B_1(T)\lambda _1^t + \frac{y}{x+y}\left[ B_2(T)(1-\lambda _2)\lambda _2^t + B_3(T)(1-\lambda _3) \lambda _3^t\right] \end{aligned}$$
(82b)
$$\begin{aligned} s_{t}&= \bar{s} + B_2(T) \lambda _2^t + B_3(T) \lambda _3^t \end{aligned}$$
(82c)
The constants \(B_i(T)\) (\(i=1,\dots ,3\)) are derived from the initial stock \(s_0\) of cumulative GHG emissions and the terminal conditions \(A_{T}^\mathcal {C} = 0\) and \(A_{T}^\mathcal {NC} = 0\) of aggregate emission abatement levels, which imply
$$\begin{aligned} B_1(T)&= \frac{y \bar{A}^C - x \bar{A}^{NC} }{(x+y)\lambda _1^T}, \end{aligned}$$
(83a)
$$\begin{aligned} B_2(T)&= - \frac{\bar{A}^C + \bar{A}^{NC} + (s_0-\bar{s})(1-\lambda _3)\lambda _3^{T}}{(1-\lambda _2) \lambda _2^T - (1-\lambda _3) \lambda _3^T}, \end{aligned}$$
(83b)
$$\begin{aligned} B_3(T)&= \frac{\bar{A}^C + \bar{A}^{NC} + (s_0-\bar{s})(1-\lambda _2)\lambda _2^{T}}{(1-\lambda _2) \lambda _2^T - (1-\lambda _3) \lambda _3^T}. \end{aligned}$$
(83c)
By inserting these expressions back into equations () yields the aggregate abatement levels \(A_t^\mathcal {C}\) and \(A_t^\mathcal {NC}\) and the stock of aggregate cumulative emissions \(s_t\) in the subgame perfect Nash equilibrium (\(t=0,\dots ,T\)).
Finally, we determine the individual countries’ abatement levels in the subgame perfect Nash equilibrium. Using backward induction starting from \(t=T\), we obtain from equations ():
$$\begin{aligned} a_T^i&= 0 ,\qquad \forall \ i \in \mathcal {I}\ ,\end{aligned}$$
(84a)
$$\begin{aligned} a_t^i&= \frac{A^\mathcal {C}_t}{\alpha _i \mathcal {A}^\mathcal {C}}, \qquad \forall \ i\in \mathcal {C}, \quad t=0,\dots ,T-1,\end{aligned}$$
(84b)
$$\begin{aligned} a_t^i&= \frac{\gamma _i}{\Gamma ^\mathcal {NC}} A^\mathcal {NC}_{t}, \qquad \forall \ i\notin \mathcal {C}, \quad t=0,\dots ,T-1\ . \end{aligned}$$
(84c)
\(\square\)