Skip to main content

Advertisement

Log in

Ongoing DNA synthesis in the rat cerebral cortex is regulated by a proteolytic pathway independent of the proteasome and calpains

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

By using mini-units of tissue and protease inhibitors in short term incubation (0–180 min), we studied the role of proteolysis for ongoing DNA replication in the developing rat cerebral cortex. The protease inhibitors TLCK, TPCK, PMSF, MG-132 and PSI markedly inhibited DNA synthesis. The inhibitory effects were concentration-dependent and of early onset (within 60 min). The most selective proteasome inhibitors lactacystin and clasto-lactacystin-β-lactone as well as the calpain inhibitor I and II had no or minimal effects on DNA synthesis. Only high concentrations of calpain inhibitor I (≥ 250 μM) and calpain inhibitor II (≥ 500 μM) gave a DNA synthesis inhibition. These results suggest that (1) ongoing DNA replication is regulated by proteolysis and (2) the proteolytic pathways involved are neither the proteasome nor the calpains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Deshaies RJ (1995) Make it or brake it: the role of ubiquitin-dependent proteolysis in cellular regulation. Trends Cell Biol 5:428–434 doi:10.1016/S0962-8924(00)89102-3

    Article  CAS  PubMed  Google Scholar 

  2. Etlinger JD, Goldberg AL (1997) A soluble ATP-dependent proteolytic system responsible for the degradation of abnormal proteins in reticulocytes. Proc Natl Acad Sci U S A 74:54–58 doi:10.1073/pnas.74.1.54

    Article  Google Scholar 

  3. Goldberg AL (1992) The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur J Biochem 203:9–23 doi:10.1111/j.1432–1033.1992.tb19822.x

    Article  CAS  PubMed  Google Scholar 

  4. Hershko A, Ganoth D, Sudakin V, Dahan A, Cohen LH, Luca FC, Ruderman JV, Eytan E (1994) Components of a system that ligates cyclin to ubiquitin and their regulation by the protein kinase cdc2. J Biol Chem 269:4940–4946

    CAS  PubMed  Google Scholar 

  5. Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL (1996) The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84:769–779 doi:10.1016/S0092-8674(00)81054-5

    Article  CAS  PubMed  Google Scholar 

  6. Rock KL, Gramm C, Rothstein L, Clark K, Dick L, Hwang D, Goldberg AL (1994) Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class. Mol Cell 78:761–771

    CAS  Google Scholar 

  7. Yang Y, Kitagaki J, Wang H, Hou DX, Perantoni AO (2008) Targeting the ubiquitin–proteasome system for cancer therapy. Cancer Sci 100:24–28

    Article  PubMed  Google Scholar 

  8. Orlowsky M (1990) The multicatalytic proteinase complex, a major extralysosomal proteolytic system. Biochemistry 28:9270–9278 doi:10.1021/bi00450a006

    Article  Google Scholar 

  9. Sterz J, von Metzler I, Hahne JC, Lamottke B, Rademacher J, Heider U, Terpos E, Sezer O (2008) The potential of proteasome inhibitors in cancer therapy. Expert Opin Investig Drugs 17:879–895 doi:10.1517/13543784.17.6.879

    Article  CAS  PubMed  Google Scholar 

  10. Devoy A, Soane T, Welchman R, Mayer RJ (2005) The ubiquitin–proteasome system and cancer. Essays Biochem 41:187–203 doi:10.1042/EB0410187

    Article  CAS  PubMed  Google Scholar 

  11. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672 doi:10.1126/science.274.5293.1664

    Article  CAS  PubMed  Google Scholar 

  12. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745 doi:10.1016/j.molcel.2007.11.015

    Article  CAS  PubMed  Google Scholar 

  13. King RW, Deshaies RJ, Peters J-M, Kirschner MW (1996) How proteolysis drives the cell cycle. Science 274:1652–1659 doi:10.1126/science.274.5293.1652

    Article  CAS  PubMed  Google Scholar 

  14. Song MS, Song SJ, Kim SJ, Nakayama K, Nakayama KI, Lim DS (2008) Skp2 regulates the antiproliferative function of the tumor suppressor RASSF1A via ubiquitin-mediated degradation at the G1-S transition. Oncogene 27:3176–3185 doi:10.1038/sj.onc.1210971

    Article  CAS  PubMed  Google Scholar 

  15. van Leuken R, Clijsters L, Wolthuis R (2008) To cell cycle, swing the APC/C. Biochim Biophys Acta 1786:49–59

    PubMed  Google Scholar 

  16. Yew PR, Kirschner MW (1997) Proteolysis and DNA replication: the CDC34 requirement in the Xenopus egg cell cycle. Science 277:1672–1676 doi:10.1126/science.277.5332.1672

    Article  CAS  PubMed  Google Scholar 

  17. Yakisich JS, Sidén Å, Idoyaga Vargas V, Eneroth P, Cruz M (1999) Early effects of protein kinase modulator on DNA synthesis in rat cerebral cortex. Exp Neurol 159:164–176 doi:10.1006/exnr.1999.7121

    Article  CAS  PubMed  Google Scholar 

  18. Yakisich JS, Sidén Å, Idoyaga Vargas V, Eneroth P, Cruz M (1998) Fast and sensitive method for simultaneous measurement of cell proliferation rate and drug sensitivity in rat cerebral cortex.151:194–202

  19. Labarca C, Paigen K (1980) A simple, rapid, and sensitive DNA assay procedure. Anal Biochem 102:344–352 doi:10.1016/0003-2697(80)90165-7

    Article  CAS  PubMed  Google Scholar 

  20. Jones E (1991) Tackling the protease problem in Saccharomyces cerevisiae. Methods Enzymol 194:428–453 doi:10.1016/0076-6879(91)94034-A

    Article  CAS  PubMed  Google Scholar 

  21. Altman J, Das GD (1966) Autoradiographic and histopathological studies of postnatal neurogenesis. I. A longitudinal investigation of the kinetics, migration and transformation of cells incorporating tritiated thymidine in neonate rats, with special reference to postnatal neurogenesis in some brain regions. J Comp Neurol 126:337–390 doi:10.1002/cne.901260302

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka K, Li K, Ichihara A, Waxman L, Goldberg AL (1986) A high molecular weight protease in the cytosol of rat liver. 1. Purification, enzymological properties and tissue distribution. J Biol Chem 261:15197–15203

    CAS  PubMed  Google Scholar 

  23. Mengual E, Aritzi P, Rodrigo J, Gimenez-Amaya JM, Castano JG (1996) Immunohistochemical distribution and electron microscopic subcellular localization of the proteasome in the rat CNS. J Neurosci 16:6331–6341

    CAS  PubMed  Google Scholar 

  24. Vilenchik MM, Tretjak TM (1977) Evidence for unscheduled DNA synthesis in rat brain. J Neurochem 29:1159–1161 doi:10.1111/j.1471-4159.1977.tb06526.x

    Article  CAS  PubMed  Google Scholar 

  25. Merits I, Cain J (1969) Rapid loss of labeled DNA from rat brain due to radiation damage. Biochim Biophys Acta 174:315–321

    CAS  PubMed  Google Scholar 

  26. Dick LR, Cruikshank AA, Destree AT, Grenier L, McCormack TA, Melandri FD, Nunes SL, Palombella VJ, Parent LA, Plamondon L, Stein RL (1997) Mechanistic studies on the inactivation of the proteasome by lactacystin in cultured cells. J Biol Chem 272:182–188 doi:10.1074/jbc.272.20.13372

    Article  CAS  PubMed  Google Scholar 

  27. Dick LR, Cruiskshank AA, Grenier L, Melandri FD, Nunes SL, Stein RL (1996) Mechanistic studies on the inactivation of the proteasome by lactacystin. A central role for clasto-lactacystin-B-lactone. J Biol Chem 271:7273–7276 doi:10.1074/jbc.271.13.7273

    Article  CAS  PubMed  Google Scholar 

  28. Fenteany G, Schreiber SL (1998) Lactacystin, proteasome function, and cell fate. J Biol Chem 273:8545–8548 doi:10.1074/jbc.273.15.8545

    Article  CAS  PubMed  Google Scholar 

  29. Fenteany G, Standaert RF, Lane WS, Choi S, Corey EJ, Schreiber SL (1995) Inhibition of proteasome activities and subunit-specific amino-terminal threonine modification by lactacystin. Science 268:726–731 doi:10.1126/science.7732382

    Article  CAS  PubMed  Google Scholar 

  30. Craiu A, Gaczynska M, Akopian T, Gramm C, Fenteany G, Goldberg AL, Rock K (1997) Lactacyctin and clasto-lactacystin B-lactone modify multiple proteasome B-subunits and inhibit intracellular protein degradation and major histocompatibility complex class I antigen presentation. J Biol Chem 272:23437–23445 doi:10.1074/jbc.272.20.13437

    Article  Google Scholar 

  31. Jensen TJ, Loo MA, Pind S, Williams DB, Goldberg AL, Riordan JR (1995) Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell 83:129–135 doi:10.1016/0092–8674(95)90241–4

    Article  CAS  PubMed  Google Scholar 

  32. Mori S, Tanaka K, Omura S, Saito Y (1995) Degradation process of ligand-stimulated platelet-derived growth factor B-receptor involves ubiquitin-proteasome proteolytic pathway. J Biol Chem 270:29447–29452 doi:10.1074/jbc.270.52.30862

    Article  CAS  PubMed  Google Scholar 

  33. Honda T, Yasutake K, Nihonmatsu N, Mercken M, Takahashi H, Murayama O, Murayama M, Sato K, Omori A, Tsubuki S (1999) Dual role of proteasome in the metabolism of presenilin 1. J Neurochem 72:255–261 doi:10.1046/j.1471-4159.1999.0720255.x

    Article  CAS  PubMed  Google Scholar 

  34. Schow SR, Joly A (1997) N-acetyl-leucinyl-leucinyl-norleucinal inhibits lipopolysaccharide-induced BF-kB activation and prevents TNF and IL-6 synthesis in vivo. Cell Immunol 175:199–202 doi:10.1006/cimm.1996.1061

    Article  CAS  PubMed  Google Scholar 

  35. Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11 S regulator of the multicatalytic protease. J Biol Chem 267:22369–22377

    CAS  PubMed  Google Scholar 

  36. Lee DH, Goldberg AF (1996) Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271:27280–27284 doi:10.1074/jbc.271.44.27280

    Article  CAS  PubMed  Google Scholar 

  37. Lee DH, Goldberg AL (1998) Proteasome inhibitors: valuable new tools for cell biologists. Trends Cell Biol 8:397–403 doi:10.1016/S0962-8924(98)01346-4

    Article  CAS  PubMed  Google Scholar 

  38. Grimm LM, Goldberg AL, Poirier GJ, Schwartz LM, Osborne BA (1996) Proteasomes play an essential role in thymocyte apoptosis. EMBO J 15:3835–3844

    CAS  PubMed  Google Scholar 

  39. Lu Q, Mellgren RL (1996) Calpain inhibitors and serine protease inhibitors can produce apoptosis in HL-60 cells. Arch Biochem Biophys 334:175–181 doi:10.1006/abbi.1996.0443

    Article  CAS  PubMed  Google Scholar 

  40. Choi SH, Lee SJ, Nguyen P, Jang JS, Lee J, Wu M-L, Takano E, Maki M, Henkart PA, Trepel JB (1997) Regulation of cyclin D1 by calpain protease. J Biol Chem 272:28479–28484 doi:10.1074/jbc.272.45.28479

    Article  CAS  PubMed  Google Scholar 

  41. Sarin A, Adams DH, Henkart PA (1993) Protease inhibitors selectively block T cell-triggered programmed cell death in a murine T cell hybridoma and activated peripheral T cells. J Exp Med 178:1693–1700 doi:10.1084/jem.178.5.1693

    Article  CAS  PubMed  Google Scholar 

  42. Minnaugh EG, Chen HY, Davie JR, Celis JE, Neckers K (1997) Rapid deubiquitination of nucleosomal histones in human tumor cells caused by proteasome inhibitors and stress response inducers: effects on replication, transcription, translation, and the cellular stress response. Biochemistry 36:14418–14429 doi:10.1021/bi970998j

    Article  Google Scholar 

  43. Campisi J, Morreo G, Pardee AB (1984) Kinetic of G1 transit following brief starvation for serum factors. Exp Cell Res 152:459–466 doi:10.1016/0014-4827(84)90647-5

    Article  CAS  PubMed  Google Scholar 

  44. Zetterberg A, Larsson O (1985) Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci U S A 82:5365–5369 doi:10.1073/pnas.82.16.5365

    Article  CAS  PubMed  Google Scholar 

  45. Pardee AB (1989) G1 events and regulation of cell proliferation. Science 246:603–608 doi:10.1126/science.2683075

    Article  CAS  PubMed  Google Scholar 

  46. Diehl JA, Cheng M, Roussel MF, Sherr CJ (1998) Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499–3511 doi:10.1101/gad.12.22.3499s

    Article  CAS  PubMed  Google Scholar 

  47. Sanchez M, Calzada A, Bueno A (1999) The cdc6 protein is ubiquitinated in vivo for proteolysis in Saccharomyces cerevisiae. J Biol Chem 26:9092–9097 doi:10.1074/jbc.274.13.9092

    Article  Google Scholar 

  48. Baum B, Nishitani H, Yanow S, Nurse P (1998) Cdc18 transcription and proteolysis couple S phase to passage through mitosis. EMBO J 17:5689–5698 doi:10.1093/emboj/17.19.5689

    Article  CAS  PubMed  Google Scholar 

  49. Costanzo V, Avvedimento EV, Gottesman ME, Gautier J, Grieco D (1999) Protein kinase A is required for chromosomal DNA replication. Curr Biol 9:903–906 doi:10.1016/S0960-9822(99)80395-9

    Article  CAS  PubMed  Google Scholar 

  50. Mahbudani HM, Chong JPJ, Chevalier S, Thommes P, Blow JJ (1997) Cell cycle regulation of the replication licensing system: involvement of a Cdk-dependent inhibitor. J Cell Biol 136:125–135 doi:10.1083/jcb.136.1.125

    Article  Google Scholar 

  51. Coverley D, Wilkinson HR, Madine MA, Mills AD, Laskey RA (1998) Protein kinase inhibition in G2 causes mammalian mcm proteins to reassociates with chromatin and restores ability to replicate. Exp Cell Res 238:63–69 doi:10.1006/excr.1997.3829

    Article  CAS  PubMed  Google Scholar 

  52. Byrnes KRFA (2007) Role of cell cycle proteins in CNS injury. Neurochem Res 32:1799–1807 doi:10.1007/s11064-007-9312-2

    Article  CAS  PubMed  Google Scholar 

  53. Dahlmann B (2007) Role of proteasomes in disease. BMC Biochem 8:S3 doi:10.1186/1471-2091-8-S1-S3

    Article  PubMed  Google Scholar 

  54. Yew EH, Cheung NS, Choy MS, Qi RZ, Lee AY, Peng ZF, Melendez AJ, Manikandan J, Koay ES, Chiu LL (2005) Proteasome inhibition by lactacystin in primary neuronal cells induces both potentially neuroprotective and pro-apoptotic transcriptional responses: a microarray analysis. J Neurochem 4:943–956 doi:10.1111/j.1471-4159.2005.03220.x

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council, the Karolinska Institute and the Stockholms Läns Landsting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Sebastián Yakisich.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Proteases inhibited by TLCK, TPCK, PMSF, MG-132, PSI, LC, CLC, Ca I I and Ca I II. A) Reported IC50 for the proteasome and calpains. B) Reported IC50 for the other cysteine and serine proteases (172 kb).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yakisich, J.S., Sidén, Å. & Cruz, M. Ongoing DNA synthesis in the rat cerebral cortex is regulated by a proteolytic pathway independent of the proteasome and calpains. Invest New Drugs 28, 242–250 (2010). https://doi.org/10.1007/s10637-009-9238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-009-9238-4

Keywords

Navigation