Skip to main content

Advertisement

Log in

Evaluation of the visual system with visual evoked potential and optical coherence tomography in patients with idiopathic Parkinson's disease and with multiple system atrophy

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Background

In addition to motor findings, non-motor findings including alterations in visual acuity, decrease in blink reflex, and pupil reactivity cause the impaired quality of life in idiopathic Parkinson’s disease (PD) and multiple system atrophy (MSA). Our study aimed to examine possible latency and amplitude changes in pattern visual evoked potentials (pVEP) along with retinal and macular changes in optical coherence tomography (OCT) in PD and MSA groups. We also intended to investigate whether any OCT parameters could be a biomarker for Parkinson's or MSA.

Methods

Our study included 50 patients with PD, 15 with MSA, and 50 healthy control subjects. All patients in the study underwent neurological and ophthalmological examination and investigations of OCT to measure the retinal and macular thickness and pVEP to assess visual pathways.

Results

When PD, MSA, and control groups were compared, a significant difference was found in all retinal thickness values in average, nasal, and superior retinal nerve fiber thickness (pRNFL), and in all macular thickness values except nasal outer and inferior outer quadrants and in ganglion cell complex (GCC) thicknesses (p < 0.05). Moreover, a significant difference was found in N75, P100, and N145 latencies and N75-P100 amplitude (p < 0.05). The thickness of both pRNFL, inner and outer macular quadrants, was thinner in the MSA group than in PD but GCC thickness was thinner in PD group.

Conclusions

The present study compared pVEP and OCT parameters in PD and MSA groups. It was concluded that pVEP and OCT examinations were of importance in that they were easily accessible, affordable, noninvasive biomarkers that might be used in early periods and progression of the disease and in follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Fahn S, Przedborski S (2000) Parkinsonizm. In: Rowland LP (ed) Merritt’s textbook of neurology. 10th edn, Lippincott Williams & Wilkins, Philadelphia, 9789752771819, pp 679–693

  2. Rajput AH, Birdi S (1997) Epidemiology of Parkinson’s disease. Parkinsonism Relat Disord 3(4):175–186. https://doi.org/10.1016/S1353-8020(97)00029-1

    Article  CAS  PubMed  Google Scholar 

  3. Jellinger KA (2018) Multiple system atrophy: an oligodendroglioneural synucleinopathy. J Alzheimer’s Dis 62(3):1141–1179. https://doi.org/10.3233/JAD-170397

    Article  CAS  Google Scholar 

  4. Armstrong RA (2014) Visual signs and symptoms of multiple system atrophy. Clin Exp Optom 97(6):483–491. https://doi.org/10.1111/cxo.12206

    Article  PubMed  Google Scholar 

  5. Armstrong RA (2008) Visual signs and symptoms of Parkinson’s disease: review. Clin Exp Optom 91(2):129–138. https://doi.org/10.1111/j.1444-0938.2007.00211.x

    Article  PubMed  Google Scholar 

  6. Alkabie S, Lange A, Manogaran P, Stoessl AJ, Costello F, Barton JJS (2020) Optical coherence tomography of patients with Parkinson ’ s disease and progressive supranuclear palsy. Clin Neurol Neurosurg 189:105635. https://doi.org/10.1016/j.clineuro.2019.105635

    Article  PubMed  Google Scholar 

  7. Albrecht P, Müller AK, Südmeyer M, Ferrea S, Ringelstein M, Cohn E, Aktas O, Dietlein T, Lappas A, Foerster A, Hartung HP, Schnitzler A, Methner A (2012) Optical coherence tomography in parkinsonian syndromes. PLoS ONE 7(4):e34891. https://doi.org/10.1371/journal.pone.0034891 (Epub 2012 Apr 13)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pula JH, Towle VL, Staszak VM, Cao D, Bernard JT, Gomez CM (2011) Retinal nerve fibre layer and macular thinning in spinocerebellar ataxia and cerebellar multisystem atrophy. Neuro-Ophthalmology 35(3):108–114. https://doi.org/10.3109/01658107.2011.580898

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bodis-Wollner I, Yahr MD (1978) Measurements of visual evoked potentials in Parkinson’s disease. Brain 101(4):661–671. https://doi.org/10.1093/brain/101.4.661

    Article  CAS  PubMed  Google Scholar 

  10. Delalande I, Hache JC, Forzy G, Bughin M, Benhadjali J, Destée A (1998) Do visual-evoked potentials and spatiotemporal contrast sensitivity help to distinguish idiopathic Parkinson’s disease and multiple system atrophy? Mov Disord 13(3):446–452. https://doi.org/10.1002/mds.870130312

    Article  CAS  PubMed  Google Scholar 

  11. Dinner DS, Luders H, Hanson M, Lesser RP, Klem G (1995) Pattern evoked potentials (PEPs) in Parkinson’s disease. Neurology 35(4):610–610. https://doi.org/10.1212/WNL.35.4.610

    Article  Google Scholar 

  12. Ehle AL, Malcolm Stewart R, Lellelid NE, Arthur Leventhal N (1982) Normal checkerboard pattern reversal evoked potentials in Parkinsonism. Electroencephalogr Clin Neurophysiol 54(3):336–338. https://doi.org/10.1016/0013-4694(82)90182-1

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Zhang Y, Tang W, Wang B, Wang B, He S (2017) Evoked potential changes in patients with Parkinson’s disease. Brain Behav 7(5):1–8. https://doi.org/10.1002/brb3.703

    Article  Google Scholar 

  14. Tartaglione A, Pizio N, Bino G, Spadavecchia L, Favale E (1984) VEP changes in Parkinson’s disease are stimulus dependent. J Neurol Neurosurg Psychiatry 47(3):305–307. https://doi.org/10.1136/jnnp.47.3.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kaur M, Saxena R, Singh D, Behari M (2015) Correlation Between Structural and Functional Retinal Changes in Parkinson Disease Published online 254–258. doi:https://doi.org/10.1097/WNO.0000000000000240

  16. Kupersmith MJ, Shakin E, Siegel IM, Lieberman A (1982) Visual system abnormalities in patients with Parkinson’s disease. Arch Neurol 39(5):284–286. https://doi.org/10.1001/archneur.1982.00510170026007

    Article  CAS  PubMed  Google Scholar 

  17. P J Delwaide, B Mesraoua VDP (1980) Les potentiels évoqués visuels dans la maladie de Parkinson. Rev d&’apos; Electroencéphalographie Neurophysiol Clin 10(4):338–342. doi:https://doi.org/10.1016/S0370-4475(80)80031-1

  18. Gawel MJ, Das P, Vincent S, Rose FC (1981) Visual and auditory evoked responses in patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 44(3):227–232. https://doi.org/10.1136/jnnp.44.3.227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ahn J, Lee J, Kim TW (2016) Retinal thinning correlates with clinical severity in multiple system atrophy. J Neurol 263(10):2039–2047. https://doi.org/10.1007/s00415-016-8230-0

    Article  PubMed  Google Scholar 

  20. Mendoza-Santiesteban CE, Gabilondo I, Palma JA, Norcliffe-Kaufmann L, Kaufmann H (2017) The retina in multiple system atrophy: systematic review and meta-analysis. Front Neurol 24(8):206. https://doi.org/10.3389/fneur.2017.00206

    Article  Google Scholar 

  21. La Morgia C, Di Vito L, Carelli V, Carbonelli M (2017) Patterns of retinal ganglion cell damage in neurodegenerative disorders: parvocellular vs magnocellular degeneration in optical coherence tomography studies. Front Neurol 22(8):710. https://doi.org/10.3389/fneur.2017.00710

    Article  Google Scholar 

  22. Abele M, Schulz JB, Bürk K, Topka H, Dichgans J, Klockgether T (2000) Evoked potentials in multiple system atrophy (MSA). Acta Neurol Scand 101(2):111–115. https://doi.org/10.1034/j.1600-0404.2000.101002111.x

    Article  CAS  PubMed  Google Scholar 

  23. Respondek G, Roeber S, Kretzschmar H, Troakes C, Al-Sarraj S, Gelpi E, Gaig C, Chiu WZ, van Swieten JC, Oertel WH, Höglinger GU (2013) Accuracy of the National Institute for Neurological Disorders and Stroke/Society for Progressive Supranuclear Palsy and neuroprotection and natural history in Parkinson plus syndromes criteria for the diagnosis of progressive supranuclear palsy. Mov Disord 28(4):504–509. https://doi.org/10.1002/mds.25327 (Epub 2013 Feb 21)

    Article  PubMed  Google Scholar 

  24. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber layer thinning in Parkinson disease. Vision Res 44(24):2793–2797. https://doi.org/10.1016/j.visres.2004.06.009

    Article  PubMed  Google Scholar 

  25. Altintaş O, Işeri P, Ozkan B, Cağlar Y (2008) Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116(2):137–146. https://doi.org/10.1007/s10633-007-9091-8 (Epub 2007 Oct 26)

    Article  PubMed  Google Scholar 

  26. Hajee ME (2009) Inner retinal layer thinning in Parkinson disease. Arch Ophthalmol 127(6):737. https://doi.org/10.1001/archophthalmol.2009.106

    Article  PubMed  Google Scholar 

  27. Hughes AJ, Daniel SE, Kilford L, Lees AJ (1992) Accuracy of clinical diagnosis of idiopathic Parkinson ’ s disease : a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55(3):181–4

    Article  CAS  Google Scholar 

  28. Gilman S, Wenning GK, Low PA, Brooks DJ, Mathias CJ, Trojanowski JQ, Wood NW, Colosimo C, Dürr A, Fowler CJ, Kaufmann H, Klockgether T, Lees A, Poewe W, Quinn N, Revesz T, Robertson D, Sandroni P, Seppi K, Vidailhet M (2008) Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71(9):670–6. https://doi.org/10.1212/01.wnl.0000324625.00404.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Mizota A, Tormene AP, International Society for Clinical Electrophysiology of Vision (2016) ISCEV standard for clinical visual evoked potentials: (2016 update). Doc Ophthalmol 133(1):1–9. doi:https://doi.org/10.1007/s10633-016-9553-y. Epub 2016 Jul 21

  30. Moschos MM, Tagaris G, Markopoulos I, Margetis I, Tsapakis S, Kanakis M, Koutsandrea C (2011) Morphologic changes and functional retinal impairment in patients with Parkinson disease without visual loss. Eur J Ophthalmol 21(1):24–29. https://doi.org/10.5301/ejo.2010.1318

    Article  PubMed  Google Scholar 

  31. Yu JG, Feng YF, Xiang Y, Huang JH, Savini G, Parisi V, Yang WJ, Fu XA (2014) Retinal nerve fiber layer thickness changes in Parkinson disease: a meta-analysis. PLoS One 9(1):e85718. https://doi.org/10.1371/journal.pone.0085718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aaker GD, Myung JS, Ehrlich JR, Mohammed M, Henchcliffe C, Kiss S (2010) Detection of retinal changes in Parkinson’s disease with spectral-domain optical coherence tomography. Clin Ophthalmol 4(1):1427–1432. https://doi.org/10.2147/OPTH.S15136

    Article  PubMed  PubMed Central  Google Scholar 

  33. Benedek G, Horváth G, Kéri S, Braunitzer G, Janáky M (2016). The development and aging of the magnocellular and parvocellular visual pathways as indicated by VEP recordings between 5 and 84 years of age. Vision (Basel) 1(1):7. doi:https://doi.org/10.3390/vision1010007.

  34. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M (1987) Visual dysfunction in Parkinson's disease: loss in spatiotemporal contrast sensitivity. Brain 110(Pt 6):1675–1698. doi:https://doi.org/10.1093/brain/110.6.1675

  35. Schneider M, Müller HP, Lauda F, Tumani H, Ludolph AC, Kassubek J, Pinkhardt EH (2014) Retinal single-layer analysis in Parkinsonian syndromes: an optical coherence tomography study. J Neural Transm (Vienna) 121(1):41–47. https://doi.org/10.1007/s00702-013-1072-3 (Epub 2013 Aug 2)

    Article  Google Scholar 

  36. Mendoza-Santiesteban CE, Palma JA, Martinez J, Norcliffe-Kaufmann L, Hedges TR, Kaufmann H (2015) Progressive retinal structure abnormalities in multiple system atrophy. Mov Disord 30(14):1944–1953. https://doi.org/10.1002/mds.26360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yavas GF, Yilmaz O, Kusbeci T, Ozturk F (2007) The effect of levodopa and dopamine agonists on optic nerve head in Parkinson disease. Eur J Ophthalmol 17:812–816

    Article  CAS  Google Scholar 

  38. Matlach J, Wagner M, Malzahn U, Schmidtmann I, Steigerwald F, Musacchio T, Volkmann J, Grehn F, Göbel W, Klebe S (2018) Retinal changes in Parkinson’s disease and glaucoma. Parkinsonism Relat Disord 56:41–46. https://doi.org/10.1016/j.parkreldis.2018.06.016 (Epub 2018 Jun 21)

    Article  PubMed  Google Scholar 

  39. Archibald NK, Clarke MP, Mosimann UP, Burn DJ (2011) Retinal thickness in Parkinson’s disease. Parkinsonism Relat Disord 17(6):431–436. https://doi.org/10.1016/j.parkreldis.2011.03.004 (Epub 2011 Mar 31)

    Article  CAS  PubMed  Google Scholar 

  40. Chrysou A, Jansonius NM, van Laar T (2019) Retinal layers in Parkinson’s disease: a meta-analysis of spectral-domain optical coherence tomography studies. Parkinsonism Relat Disord 64:40–49. https://doi.org/10.1016/j.parkreldis.2019.04.023

    Article  PubMed  Google Scholar 

  41. Bayer AU, Keller ON, Ferrari F, Maag KP (2002) Association of glaucoma with neurodegenerative diseases with apoptotic cell death: Alzheimer’s disease and Parkinson’s disease. Am J Ophthalmol 133(1):135–137. https://doi.org/10.1016/s0002-9394(01)01196-5

    Article  PubMed  Google Scholar 

  42. Nowacka B, Lubinski W, Honczarenko K, Potemkowski A, Safranow K (2014) Ophthalmological features of Parkinson disease. Med Sci Monit 11(20):2243–2249. https://doi.org/10.12659/MSM.890861

    Article  Google Scholar 

  43. Fischer MD, Synofzik M, Kernstock C, Dietzsch J, Heidlauf R, Schicks J, Srulijes K, Wiethoff S, Menn O, Berg D, Schöls L, Schiefer U (2013) Decreased retinal sensitivity and loss of retinal nerve fibers in multiple system atrophy. Graefes Arch Clin Exp Ophthalmol 251(1):235–241. https://doi.org/10.1007/s00417-012-2118-1 (Epub 2012 Aug 10)

    Article  PubMed  Google Scholar 

  44. Eraslan M, Balci SY, Cerman E, Temel A, Suer D, Elmaci NT (2016) Comparison of optical coherence tomography findings in patients with primary open-angle glaucoma and Parkinson disease. J Glaucoma 25(7):e639–e646. https://doi.org/10.1097/IJG.0000000000000239

    Article  PubMed  Google Scholar 

  45. Garcia-Martin ES, Rojas B, Ramirez AI, de Hoz R, Salazar JJ, Yubero R, Gil P, Triviño A, Ramirez JM (2014) Macular thickness as a potential biomarker of mild Alzheimer’s disease. Ophthalmology 121(5):1149–1151. https://doi.org/10.1016/j.ophtha.2013.12.023 (Epub 2014 Mar 18)

    Article  PubMed  Google Scholar 

  46. Bayhan HA, Aslan Bayhan S, Tanık N, Gürdal C (2014) The Association of spectral-domain optical coherence tomography determined ganglion cell complex parameters and disease severity in Parkinson’s disease. Curr Eye Res 39(11):1117–1122. https://doi.org/10.3109/02713683.2014.894080

    Article  CAS  PubMed  Google Scholar 

  47. Spund B, Ding Y, Liu T, Selesnick I, Glazman S, Shrier EM, Bodis-Wollner I (2013) Remodeling of the fovea in Parkinson disease. J Neural Transm (Vienna) 120(5):745–53. doi: https://doi.org/10.1007/s00702-012-0909-5. Epub 2012 Dec 23

  48. Shrier EM, Adam CR, Spund B, Glazman S, Bodis-Wollner I (2012) Interocular asymmetry of foveal thickness in Parkinson disease. J Ophthalmol 2012:728457. https://doi.org/10.1155/2012/728457 (Epub 2012 Aug 1)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mailankody P, Battu R, Khanna A, Lenka A, Yadav R, Pal PK (2015) Optical coherence tomography as a tool to evaluate retinal changes in Parkinson’s disease. Parkinsonism Relat Disord 21(10):1164–1169. https://doi.org/10.1016/j.parkreldis.2015.08.002

    Article  PubMed  Google Scholar 

  50. Uchida A, Pillai JA, Bermel R, Bonner-Jackson A, Rae-Grant A, Fernandez H, Bena J, Jones SE, Leverenz JB, Srivastava SK, Ehlers JP (2018) Outer retinal assessment using spectral-domain optical coherence tomography in patients with alzheimer’s and Parkinson’s disease. Invest Ophthalmol Vis Sci 59(7):2768–2777. https://doi.org/10.1167/iovs.17-23240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. QuagLiato LB (2014) Applications of visual evoked potentials and Fourier-domain optical coherence tomography in Parkinson’s disease : a controlled study 77(4):238–242

  52. Cubo E, López Peña MJ, Diez Feijo Varela E, Pérez Gil O, Garcia Gutierrez P, Araus González E, Prieto Tedejo R, Mariscal Pérez N, Armesto D (2014) Lack of association of morphologic and functional retinal changes with motor and non-motor symptoms severity in Parkinson’s disease. J Neural Transm (Vienna) 121(2):139–145. https://doi.org/10.1007/s00702-013-1093-y

    Article  Google Scholar 

  53. Frederick JM, Rayborn ME, Laties AM, Lam DMK, Hollyfield JG (1982) Dopaminergic neurons in the human retina. J Comput Neurol 210(1):65–79. https://doi.org/10.1002/cne.902100108

    Article  CAS  Google Scholar 

  54. Bodis-Wollner I, Kozlowski PB, Glazman S, Miri S (2014) α-synuclein in the inner retina in Parkinson disease. Ann Neurol 75(6):964–966. https://doi.org/10.1002/ana.24182

    Article  CAS  PubMed  Google Scholar 

  55. Ma X, Wang Y, Wang N, Zhang R (2021). Retina thickness in atypical parkinsonism: a systematic review and meta-analysis. J Neurol. doi: https://doi.org/10.1007/s00415-021-10703-6. Epub ahead of print

  56. Yaar I (1980) The effect of levodopa treatment on the visual evoked potentials in Parkinsonian patients. Electroencephalogr Clin Neurophysiol 50(3–4):267–274. https://doi.org/10.1016/0013-4694(80)90154-6

    Article  CAS  PubMed  Google Scholar 

  57. Onofrj M, Ghilardi MF, Basciani M, Gambi D (1986) Visual evoked potentials in parkinsonism and dopamine blockade reveal a stimulus-dependent dopamine function in humans. J Neurol Neurosurg Psychiatry 49(10):1150–1159. doi:https://doi.org/10.1136/jnnp.49.10.1150

  58. Barbato L, Rinalduzzi S, Laurenti M, Ruggieri S, Accornero N (1994) Color VEPs in Parkinson’s disease. Electroencephalogr Clin Neurophysiol Potentials Sect 92(2):169–172. https://doi.org/10.1016/0168-5597(94)90057-4

    Article  CAS  Google Scholar 

  59. Hammond EJ, Wilder BJ (1983) Evoked potentials in olivopontocerebellar atrophy. Arch Neurol 40(6):366–369. https://doi.org/10.1001/archneur.1983.04050060066012

    Article  CAS  PubMed  Google Scholar 

  60. Nuwer MR, Perlman SL, Packwood JW, Kark RAP (1983) Evoked potential abnormalities in the various inherited ataxias. Ann Neurol 13(1):20–27. https://doi.org/10.1002/ana.410130106

    Article  CAS  PubMed  Google Scholar 

  61. Wessekl K, Huss GP, Brückmann H, Kömpf D (1993) Follow-up of neurophysiological tests and CT in late-onset cerebellar ataxia and multiple system atrophy. J Neurol 240(3):168–176. https://doi.org/10.1007/BF00857523

    Article  Google Scholar 

  62. Okuda B, Tachibana H, Kawabatd K, Takeda M, Sugita M (1995) Visual evoked potentials (VEPs) in Parkinson’s disease: correlation of pattern VEPs abnormality with dementia. Alzheimer Dis Assoc Disord 9:68–72

    Article  CAS  Google Scholar 

  63. Schafer EWP, McKean CM (1975) Evidence that monoamines influence human evoked potentials. Brain Res 99(1):49–58. https://doi.org/10.1016/0006-8993(75)90607-1

    Article  CAS  PubMed  Google Scholar 

  64. Kangasniemi P, Falck B, Langvik V-A, Hyyppa MT (1978) Levotryptophan treatment in migraine. Headache J Head Face Pain 18(3):161–166. https://doi.org/10.1111/j.1526-4610.1978.hed1803161.x

    Article  CAS  Google Scholar 

  65. Kolb H, Fernández E, Ammermüller J, Cuenca N (1995) Substance P: a neurotransmitter of amacrine and ganglion cells in the vertebrate retina. Histol Histopathol 10(4):947–968

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by Celal Bayar University Scientific Research Commission.

Author information

Authors and Affiliations

Authors

Contributions

MB and AKA contributed to study conception and design, data analysis, and manuscript preparation. MB contributed to pVEP recordings, data analysis, manuscript preparation, final approval, and submission. MSA contributed to data input. HM and EK contributed to ophthalmic evaluations. DS contributed to data analysis and interpretation, manuscript preparation, and revision.

Corresponding author

Correspondence to Melike Batum.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in the studies involving human participants were in accordance with the ethical standards of the Celal Bayar University Medical Faculty Ethics Committee (Approval Date: 14/11/2018 Approval Number: 20.478.486) and with Helsinki declaration (1964) and its later amendments or comparable ethical standards.

Informed consent

All subjects freely consented to participate in this study, and an informed consent was obtained from all participants included in the study.

Statements of human rights

All procedures performed on human participants were done so in accordance with the ethical standards of the Celal Bayar University Medical Faculty Ethics Committee and in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Statement on the welfare of animals

This article does not contain any studies with animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batum, M., Ak, A.K., Arı, M.S. et al. Evaluation of the visual system with visual evoked potential and optical coherence tomography in patients with idiopathic Parkinson's disease and with multiple system atrophy. Doc Ophthalmol 145, 99–112 (2022). https://doi.org/10.1007/s10633-022-09887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-022-09887-7

Keywords

Navigation