Skip to main content

Advertisement

Log in

Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease

  • Original Research Article
  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

Background To measure the parapapillary retinal nerve fiber layer and macular thickness and macular volume in vivo and to evaluate whether retinal structural changes and visual cortical responses may be related to the clinical severity of the PD. Methods We included 17 patients with Parkinson’s disease and 11 healthy subjects of a similar age. Unified Parkinson’s disease rating scale scores in Parkinson’s disease and control subjects were assessed for clinical evaluation. The retinal nerve fiber layer thickness, macular thickness and volume were measured by commercially available optical coherence tomography Model 3000 unit. Peak latencies of P100 component were measured by pattern visual evoked potential examination. Results The mean retinal nerve fiber layer average thickness was significantly reduced in Parkinson’s disease patients (98.76 ± 10.90 μm) when compared with those of control subjects (114.54 ± 5.72) (P < 0.05). The retinal thickness reduction was statistically significant in superior inner macula; temporal, nasal and inferior quadrants of outer macula (P < 0.05)(Table 2). The mean total macular volume of Parkinson’s disease patients (6.82 ± 0.32 mm3) was significantly reduced when compared with those of control subjects (7.09 ± 0.23 mm3). Highly significant inverse correlation between foveal retinal thickness and total and motor subscores of Unified Parkinson’s disease rating scale was observed in Parkinson’s disease patients, respectively (r = −0.660; P = 0.004), (r = −0.625, P = 0.007). There was a moderate nearly significant inverse correlation between total macular volume and P100 latency in PD (r = −0.328; P = 0.058). Conclusions In Parkinson’s disease patients there is a reduction of retinal nerve fiber layer thickness, macular thickness and volume evaluated in vivo by optical coherence tomography. Reduced foveal thickness which is not found to be statistically different from normal is correlated to the severity of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Djamgoz MB, Hankins MW, Hirano J, Archer SN (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37(24):3509–3529

    Article  PubMed  CAS  Google Scholar 

  2. Bodis-Wollner I (1990) Visual deficits related to dopamine deficiency in experimental animals and Parkinson’s disease patients. Trends Neurosci 13(7):296–302

    Article  PubMed  CAS  Google Scholar 

  3. Jackson GR, Owsley C (2003) Visual dysfunction, neurodegenerative diseases and aging. Neurol Clin North Am 21:709–728

    Google Scholar 

  4. Price MJ, Feldman RG, Kayne H (1992) Abnormalities in color vision and contrast sensitivity in Parkinson’s disease. Neurology 42:887–890

    PubMed  CAS  Google Scholar 

  5. Bodis-Wollner I, Yahr M (1978) Measurement of visual evoked potentials in Parkinson’s disease. Brain 101:661–671

    Article  PubMed  CAS  Google Scholar 

  6. Harnois C, Di Paolo T (1990) Decreased dopamine in the retinas of patients with Parkinson’s disease. Invest Ophthalmol Vis Sci 31:2473–2475

    PubMed  CAS  Google Scholar 

  7. Bodis-Wollner I, Marx MS, Mitra S, Bobak P, Mylin L, Yahr M (1987) Visual dysfunction in Parkinson’s disease loos in spatiotemporal contrast sensitivity. Brain 110:1675–1698

    Article  PubMed  Google Scholar 

  8. Dinner DS, Lüders H, Hanson M, Lesser RP, Klem G (1985) Pattern evoked potentials (PEPS) in Parkinson’s disease. Neurology 35:610–613

    PubMed  CAS  Google Scholar 

  9. Nightingale S, Mitchell KW, Howe JW (1986) Visual evoked cortical potentials and pattern electroretinograms in Parkinson’s disease and control subjects. J Neurol Neurosurg Psychiatry 49:1280–1287

    Article  PubMed  CAS  Google Scholar 

  10. Inzelberg R, Ramirez JA, Nisipeanu P, Ophir A (2004) Retinal nerve fiber thinning in Parkinson disease. Vision Res 44:2793–2797

    Article  PubMed  Google Scholar 

  11. Krivoy D, Gentile R, Liebmann JM, Stegman Z, Rosen R, Walsh JB, Ritch R (1996) Imaging congenital optic disc pit using optical coherence tomography. Arch Ophthalmol 114:165–170

    PubMed  CAS  Google Scholar 

  12. Hee MR, Puliafito CA, Wong C, Duker JS et al (1995) Quantitative assessment of macular edema with optical coherence tomography. Arch Ophthalmol 113:1019–1029

    PubMed  CAS  Google Scholar 

  13. Hee MR, Puliafito CA, Wong C, Duker JS et al (1995) Optical coherence tomography of macular holes. Ophthalmology 102:748–756

    PubMed  CAS  Google Scholar 

  14. Guedes V, Schuman JS, Hertzmark E et al (2003) Optical coherence tomography measurement of macular and nerve fiber layer thickness in normal and glaucomatous human eyes. Ophthalmology 110:177–189

    Article  PubMed  Google Scholar 

  15. Fahn S (1987) Unified Parkinson’s disease rating scale development comitte and Elton RL, 1987. Unified Parkinson’s disease rating scale. In: Fahn S, Marsden CD, Caine D (Eds) Recent developments in Parkinson’s disease. Raven, New York, pp 153–163

    Google Scholar 

  16. Celesia GG, Kauffman D, Cone SB (1986) Simultaneous recording of pattern electroretinography and visual evoked potentials in multiple sclerosis. A method to separate a demyelination from axonal damage to the optic nerve. Arch Neurol 43:1247–1252

    PubMed  CAS  Google Scholar 

  17. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA (1991) Optical coherence tomography. Science 254:1178–1181

    Article  PubMed  CAS  Google Scholar 

  18. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG (1995) Optical coherence tomography of the human retina. Arch Ophthalmol 113:325–332

    PubMed  CAS  Google Scholar 

  19. Schuman JS (1997) Optical coherence tomography for imaging and quantification of nerve fiber layer thickness. In: Schuman JS (ed) Imaging in glaucoma, Slack Inc., Thorofare, pp 95–130

    Google Scholar 

  20. Jankovic J, Marsden CD (1988) Therapeutic strategies in Parkinson’s disease. In: Jankovic J, Tolosa E (eds) Parkinson’s disease and movefsment disorders. Urban & Schwarzenberg, Baltimore, pp 95–119

    Google Scholar 

  21. Lang AE, Lozano AM (1998) Parkinson’s disease—first of two parts. New Engl J Med 339(15):1044–1053

    Article  PubMed  CAS  Google Scholar 

  22. Tatton WG, Kwan MM, Verrier MC, Seniuk NA, Theriault E (1990) MPTP produces reversible disappereance of thyrosine hydroxylase containing retinal amacrine cells. Brain Res 527:21–31

    Article  PubMed  CAS  Google Scholar 

  23. Reader TA, Quesney LF (1986) Dopamine in the visual cortex of the cat. Experimentia 42:1242–1244

    Article  CAS  Google Scholar 

  24. Parkinson D (1989) Evidence for a dopaminergic innervation of cat primary cortex. Neuroscience 30:171–179

    Article  PubMed  CAS  Google Scholar 

  25. Bodis-Wollner I (2003) Neuropsychological and perceptual defects in Parkinson’s disease. Parkinson’s Dis Relat Disord 9(suppl 2):83–89

    Article  Google Scholar 

  26. Iseri PK, Altintas O, Tokay T, Yuksel N (2006) Relationship between cognitive impairment and retinal morphological and visual functional abnormalities in Alzheimer disease. J Neuroophthalmol 26(1):18–24

    PubMed  Google Scholar 

  27. Parisi V, Manni G, Spadaro M, Colacino G, Restuccia R, Marchi S, Bucci MG, Pierelli F (1999) Correlation between morphological and functional retinal impairment in multiple sclerosis patients. Invest Ophthalmol Vis Sci 40(11):2520–2527

    PubMed  CAS  Google Scholar 

  28. Parisi V, Pierelli F, Coppola G, Restuccia R, Ferrazzoli D, Scassa C, Bianco F, Parisi L, Fattapposta F (2007) Reduction of optic nerve fiber layer thickness in CADASIL. Eur J Neurol 14(6):627–631

    Article  PubMed  CAS  Google Scholar 

  29. Tagliati M, Bodis-Wollner I, Yahr MD (1996) The pattern electroretinogram in Parkinson’s disease reveals lack of retinal spatial tuning. Electroencephalogr Clin Neurophysiol 100(1):1–11

    Article  PubMed  CAS  Google Scholar 

  30. Peppe A, Stanzione P, Pierantozzi M, Semprini R, Bassi A, Santilli AM, Formisano R, Piccolino M, Bernardi G (1998) Does pattern electroretinogram spatial tuning alteration in Parkinson’s disease depend on motor disturbances or retinal dopaminergic loss? Electroencephalogr Clin Neurophysiol 106(4):374–382

    Article  PubMed  CAS  Google Scholar 

  31. Ghilardi MF, Bodis-Wollner I, Onofrj MC, Marx MS, Glover AA (1988) Spatial frequency-dependent abnormalities of the pattern electroretinogram and visual evoked potentials in a parkinsonian monkey model. Brain 111(Pt 1):131–149

    Article  PubMed  Google Scholar 

  32. Seibyl JP, Marek KL, Quinlan D, Sheff K, Zoghbi S, Zea-Ponce Y, Baldwin RM, Fussell B, Smith EO, Charney DS et al (1995) Decreased single-photon emission computed tomographic [123I]beta-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Ann Neurol 38(4):589–598

    Article  PubMed  CAS  Google Scholar 

  33. Brücke T, Asenbaum S, Pirker W, Djamshidian S, Wenger S, Wöber C, Müller C, Podreka I (1997) Measurement of the dopaminergic degeneration in Parkinson’s disease with [123I] beta-CIT and SPECT. Correlation with clinical findings and comparison with multiple system atrophy and progressive supranuclear palsy. J Neural Transm Suppl 50:9–24

    PubMed  Google Scholar 

  34. Varma R, Skaf M, Barron E (1996) Retinal nerve fiber layer thickness in normal human eyes. Ophthalmology 103(12):2114–2119. Erratum in: Ophthalmology 1997 104(2):174

    PubMed  CAS  Google Scholar 

  35. Sihota R, Sony P, Gupta V, Dada T, Singh R (2006) Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Invest Ophthalmol Vis Sci 47(5):2006–2010

    Article  PubMed  Google Scholar 

  36. Manassakorn A, Nouri-Mahdavi K, Caprioli J (2006) Comparison of retinal nerve fiber layer thickness and optic disk algorithms with optical coherence tomography to detect glaucoma. Am J Ophthalmol 141(1):105–115

    Article  PubMed  Google Scholar 

  37. Kanamori A, Nakamura M, Escano MF, Seya R, Maeda H, Negi A (2003) Evaluation of the glaucomatous damage on retinal nerve fiber layer thickness measured by optical coherence tomography. Am J Ophthalmol. 135(4):513–520

    Article  PubMed  Google Scholar 

  38. Zeimer R (1998) Application of the retinal thickness analyzer to the diagnosis and management of ocular diseases. Ophthalmol Clin North Am 11:359–379

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgül Altintaş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altintaş, Ö., Işeri, P., Özkan, B. et al. Correlation between retinal morphological and functional findings and clinical severity in Parkinson’s disease. Doc Ophthalmol 116, 137–146 (2008). https://doi.org/10.1007/s10633-007-9091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10633-007-9091-8

Keywords

Navigation