Skip to main content
Log in

Cyclic codes and some new entanglement-assisted quantum MDS codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Entanglement-assisted quantum error correcting codes (EAQECCs) play a significant role in protecting quantum information from decoherence and quantum noise. In this work, we construct six families of new EAQECCs of lengths \(n=(q^2+1)/a\), \(n=q^2+1\) and \(n=(q^2+1)/2\) from cyclic codes, where \(a=m^2+1\) (\(m\ge 1\) is odd) and q is an odd prime power with the form of \(a|(q+m)\) or \(a|(q-m)\). Moreover, those EAQECCs are entanglement-assisted quantum maximum distance separable (EAQMDS) codes when \(d\le (n+2)/2\). In particular, the length of EAQECCs we studied is more general and the method of selecting defining set is different from others. Compared with all the previously known results, the EAQECCs in this work have flexible parameters and larger minimum distance. All of these EAQECCs are new in the sense that their parameters are not covered by the quantum codes available in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brun T., Devetak I., Hsieh M.: Correcting quantum errors with entanglement. Science 314(5798), 436–439 (2006).

    Article  MathSciNet  Google Scholar 

  2. Calderbank A., Rains E., Shor P., Sloane N.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998).

    Article  MathSciNet  Google Scholar 

  3. Calderbank A., Shor P.: Good quantum error-correcting codes exist. Phys. Rev. A 54(2), 1098–1105 (1996).

    Article  Google Scholar 

  4. Chen H., Ling S., Xing C.P.: Quantum codes from concatenated algebraic-geometric codes. IEEE Trans. Inf. Theory 51(8), 2915–2920 (2005).

    Article  MathSciNet  Google Scholar 

  5. Chen J., Huang Y., Feng C., Chen R.: Entanglement-assisted quantum MDS codes constructed from negacyclic codes. Quantum Inf. Process. 16(303), 1–22 (2017).

    MathSciNet  MATH  Google Scholar 

  6. Chen X., Zhu S., Kai X.: Entanglement-assisted quantum MDS codes constructed from constacyclic codes. Quantum Inf. Process. 17(273), 1–18 (2018).

    MathSciNet  MATH  Google Scholar 

  7. Fan J., Chen H., Xu J.: Construction of \(q\)-ary entanglement-assisted quantum MDS codes with minimum distance greater than \(q+1\). Quantum Inf. Comput. 16(5 & 6), 0423–0434 (2016).

    MathSciNet  Google Scholar 

  8. Galindo C., Hernando F., Ruano D.: Entanglement-assisted quantum error correcting codes from RS codes and BCH codes with extension degree \(2\). arXiv:2007.01113v1.

  9. Grassl M.: Entanglement-assisted quantum communication beating the quantum Singleton bound. AQIS, Taipei (2016).

  10. Grassl M., Huber F., Winter A.: Entropic proofs of Singleton bounds for quantum error-correcting codes. arXiv:2010.07902v2.

  11. Guenda K., Jitman S., Gulliver T.: Constructions of good entanglement-assisted quantum error correcting codes. Des. Codes Cryptogr. 86(1), 121–136 (2018).

    Article  MathSciNet  Google Scholar 

  12. Guo L., Li R.: Linear Plotkin bound for entanglement-assisted quantum codes. Phys. Rev. A 87, 032309 (2013).

    Article  Google Scholar 

  13. La Guardia G.G.: Constructions of new families of nonbinary quantum codes. Phys. Rev. A 80(4), 042331 (2009).

    Article  Google Scholar 

  14. Li R., Li X., Guo L.: On entanglement-assisted quantum codes achieving the entanglement-assisted Griesmer bound. Quantum Inf. Process. 14(12), 4427–4447 (2015).

    Article  MathSciNet  Google Scholar 

  15. Li S., Xiong M., Ge G.: Pseudo-cyclic codes and the construction of quantum MDS codes. IEEE Trans. Inf. Theory 62(4), 1703–1710 (2016).

    Article  MathSciNet  Google Scholar 

  16. Liu X., Yu L., Hu P.: New entanglement-assisted quantum codes from \(k\)-Galois dual codes. Finite Fields Appl. 55, 21–32 (2019).

    Article  MathSciNet  Google Scholar 

  17. Lu L., Li R.: Entanglement-assisted quantum codes constructed from primitive quaternary BCH codes. Int. J. Quantum Inf. 12(3), 14500151–145001514 (2014).

    Article  MathSciNet  Google Scholar 

  18. Lu L., Ma W., Li R., Ma Y., Liu Y., Cao H.: Entanglement-assisted quantum MDS codes from constacyclic codes with large minimum distance. Finite Fields Their Appl. 53, 309–325 (2018).

    Article  MathSciNet  Google Scholar 

  19. Luo G., Cao X.: Two new families of entanglement-assisted quantum MDS codes from generalized Reed-Solomon codes. Quantum Inf. Process. 18(89), 1–12 (2019).

    MathSciNet  MATH  Google Scholar 

  20. Luo G., Cao X., Chen X.: MDS codes with hulls of arbitrary dimensions and their quantum error correction. IEEE Trans. Inf. Theory 65(5), 2944–2952 (2019).

    Article  MathSciNet  Google Scholar 

  21. MacWilliams F., Sloane N.: The Theory of Error Correcting Codes. North-Holland, Amsterdam (1977).

    MATH  Google Scholar 

  22. Qian J., Zhang L.: Nonbinary quantum codes derived from repeated-root cyclic codes. Mod. Phys. Lett. B 27(8), 1350053 (2013).

    Article  MathSciNet  Google Scholar 

  23. Qian J., Zhang L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des. Codes Cryptogr. 77(1), 193–202 (2015).

    Article  MathSciNet  Google Scholar 

  24. Qian J., Zhang L.: On MDS linear complementary dual codes and entanglement-assisted quantum codes. Des. Codes Cryptogr. 86(7), 1565–1572 (2018).

    Article  MathSciNet  Google Scholar 

  25. Qian J., Zhang L.: Constructions of new entanglement-assisted quantum MDS and almost MDS codes. Quantum Inf. Process. 18(71), 1–12 (2019).

    MathSciNet  MATH  Google Scholar 

  26. Qian J., Zhang L.: Improved constructions for quantum maximum distance separable codes. Quantum Inf. Process. 16(20), 1–10 (2017).

    MathSciNet  MATH  Google Scholar 

  27. Shor P.: Scheme for reducing decoherence in quantum memory. Phys. Rev. A 52(4), 2493–2496 (1995).

    Article  Google Scholar 

  28. Wang J., Li R., Lv J., Guo G., Liu Y.: Entanglement-assisted quantum error correction codes with length \(n = q^2+1\). Quantum Inf. Process. 18(292), 1–21 (2019).

    Google Scholar 

  29. Wilde M., Brun T.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77(6), 064302 (2008).

    Article  Google Scholar 

  30. Zhang T., Ge G.: Some new classes of quantum MDS codes from constacyclic codes. IEEE Trans. Inf. Theory 61(9), 5224–5228 (2015).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees and associate editor for their suggestions and comments, which helped to improve the presentation of the manuscript. This research is supported by the National Natural Science Foundation of China (Nos. 12001002, 61772168, 61972126) and the Natural Science Foundation of Anhui Province (No. 2008085QA04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixin Zhu.

Additional information

Communicated by P. Charpin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: The proof of Lemma 3.3

A Appendix: The proof of Lemma 3.3

Proof

For a positive integer \(\alpha \) with \(1 \le \alpha \le k\), let

$$\begin{aligned}&T_{1}= \bigcup _{\begin{array}{c} s+(m+t)k+h+\alpha \le v \le s+ (m+t+2)k+(h-1)-\alpha ,\\ if~ v\le s+mk,~0 \le u\le \alpha ,~else~ 0 \le u\le \alpha -1\\ -m\le t\le (2m-1)m~and~t~is~odd \end{array}}C_{uq+v} \\&when~ -m\le t \le -1,~h=1. \\&when~ 1\le t\le 2m-1,~h=2. \\&when~ 2m+1 \le t \le 4m-1,~h=3. \\&\dots \dots \\&when~ (2m-2)m+1 \le t \le (2m-1)m,~h=m+1. \end{aligned}$$

Then by Lemma 3.2, we have

$$\begin{aligned}&-qT_{1}= \bigcup _{\begin{array}{c} s+(m+t)k+h+\alpha \le v \le s+ (m+t+2)k+(h-1)-\alpha ,\\ if~ v\le s+mk,~0 \le u\le \alpha ,~else~ 0 \le u\le \alpha -1\\ -m\le t\le (2m-1)m~and~t~is~odd \end{array}}C_{vq-u} \\&when~ -m\le t \le -1,~h=1. \\&when~ 1\le t\le 2m-1,~h=2. \\&when~ 2m+1 \le t \le 4m-1,~h=3. \\&\dots \dots \\&when~ (2m-2)m+1 \le t \le (2m-1)m,~h=m+1. \end{aligned}$$

When \(-m\le t_1 \le -1,~h_1=1\), then \(s+1+\alpha \le v_1\le s+mk\) and \(0\le u_1\le \alpha \), it follows that

$$\begin{aligned} u_1q+v_1\le \alpha q+s+mk,~(s+1+\alpha )q-\alpha \le v_1q-u_1. \end{aligned}$$

When \(-m\le t_2 \le -1,~h_2=1\), then \(s+mk+1 \le v_2\le s+(m+1)k-\alpha \) and \(0\le u_2\le \alpha -1\), it follows that

$$\begin{aligned} u_2q+v_2\le (\alpha -1)q+s+(m+1)k-\alpha ,~(s+mk+1)q-\alpha +1 \le v_2q-u_2. \end{aligned}$$

When \(1\le t_3 \le 2m-1,~h_3=2\), then \(s+(m+1)k+2+\alpha \le v_3\le s+(3m+1)k-\alpha +1\) and \(0\le u_3\le \alpha -1\), it follows that

$$\begin{aligned}&u_3q+v_3\le (\alpha -1)q+s+(3m+1)k-\alpha +1,~[s+(m+1)k+2+\alpha ]q\\&-\alpha +1 \le v_3q-u_3. \end{aligned}$$

When \(2m+1\le t_4 \le 4m-1,~h_4=3\), then \(s+(3m+1)k+3+\alpha \le v_4\le s+(5m+1)k+2-\alpha \) and \(0\le u_4\le \alpha -1\), it follows that

$$\begin{aligned}&u_4q+v_4\le (\alpha -1)q+s+(5m+1)k+2-\alpha ,~[s+(3m+1)k+3+\alpha ]q\\&-\alpha +1 \le v_4q-u_4. \dots \dots \end{aligned}$$

When \(2(m-1)m+1\le t_{m+2} \le (2m-1)m,~h_{m+2}=m+1\), then \(s+[(2m-1)m+1]k+m+1+\alpha \le v_{m+2}\le s+2(m^2+1)k+m-\alpha \) and \(0\le u_{m+2}\le \alpha -1\), it follows that

$$\begin{aligned}&u_{m+2}q+v_{m+2}\le (\alpha -1)q+s+2(m^2+1)k+m-\alpha , \\&[s+(2m^2-m+1)k+m+1+\alpha ]q-\alpha +1 \le v_{m+2}q-u_{m+2}. \end{aligned}$$

It is easy to check that

\(u_1q+v_1<v_1q-u_1,~u_1q+v_1<v_2q-u_2,~\ldots ~,~u_1q+v_1<v_{m+2}q+u_{m+2}.\) \(u_2q+v_2<v_1q-u_1,~u_2q+v_2<v_2q-u_2,~\ldots ~,~u_2q+v_2<v_{m+2}q+u_{m+2}.\)

$$\begin{aligned} \dots \dots \end{aligned}$$

\(u_{m+2}q+v_{m+2}<v_1q-u_1,~\ldots ~,~u_{m+2}q+v_{m+2}<v_{m+2}q+u_{m+2}.\)

For the range of \(~v_1,~v_2,~\ldots ~,~v_{m+2}\) and \(~u_1,~u_2,~\ldots ~,~u_{m+2}\), note that \(u_iq+v_i\le (m+q)k~(i=1,2,\ldots ,m+2) \), the subscripts of \(C_{u_i+v_i}\) is the biggest number in the set. Then \(T_1\cap -qT_1=\emptyset \). The desired results follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhu, S. & Jiang, W. Cyclic codes and some new entanglement-assisted quantum MDS codes. Des. Codes Cryptogr. 89, 2533–2551 (2021). https://doi.org/10.1007/s10623-021-00935-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-021-00935-y

Keywords

Mathematics Subject Classification

Navigation