Skip to main content
Log in

Duality of codes supported on regular lattices, with an application to enumerative combinatorics

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We introduce a general class of regular weight functions on finite abelian groups, and study the combinatorics, the duality theory, and the metric properties of codes endowed with such functions. The weights are obtained by composing a suitable support map with the rank function of a graded lattice satisfying certain regularity properties. A regular weight on a group canonically induces a regular weight on the character group, and invertible MacWilliams identities always hold for such a pair of weights. Moreover, the Krawtchouk coefficients of the corresponding MacWilliams transformation have a precise combinatorial significance, and can be expressed in terms of the invariants of the underlying lattice. In particular, they are easy to compute in many examples. Several weight functions traditionally studied in Coding Theory belong to the class of weights introduced in this paper. Our lattice-theory approach also offers a control on metric structures that a regular weight induces on the underlying group. In particular, it allows to show that every finite abelian group admits weight functions that, simultaneously, give rise to MacWilliams identities, and endow the underlying group with a metric space structure. We propose a general notion of extremality for (not necessarily additive) codes in groups endowed with semi-regular supports, and establish a Singleton-type bound. We then investigate the combinatorics and duality theory of extremal codes, extending classical results on the weight and distance distribution of error-correcting codes. Finally, we apply the theory of MacWilliams identities to enumerative combinatorics problems, obtaining closed formulae for the number of rectangular matrices over a finite having prescribed rank and satisfying some linear conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Andrews G.E.: The theory of partitions. In: Rota G.C. (ed.) Encyclopedia of Mathematics and Its Applications, vol. 2. Addison-Wesley, Reading (1976).

    Google Scholar 

  2. Bonneau P.G.: Weight distributions of translates of MDS codes. Combinatorica 10(1), 103–105 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  3. Byrne E.: On the weight distribution of codes over finite rings. Adv. Math. Commun. 5, 395–406 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  4. Byrne E., Greferath M., O’Sullivan M.E.: The linear programming bound for codes over finite Frobenius rings. Des. Codes Crypt. 42, 289–301 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  5. Camion P.: Codes and association schemes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1441–1566. Elsevier, Amsterdam (1998).

    Google Scholar 

  6. Carlitz L.: Representations by quadratic forms in a finite field. Duke Math. J. 21, 123–137 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlitz L.: Representations by skew forms in a finite field. Arch. Math. 5, 19–31 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  8. Constantinescu I., Heise W.: A metric for codes over residue class rings. Probl. Inform. Transm. 33, 208–213 (1997).

    MathSciNet  MATH  Google Scholar 

  9. Delsarte P.: Association schemes and \(t\)-designs in regular semilattices. J. Comb. Theory Ser. A 2(2), 230–243 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  10. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25(3), 226–241 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  11. Delsarte P: An algebraic approach to the association schemes of coding theory. Philips Research Report, Supplement 10 (1973).

  12. Forney Jr. G.D.: Transforms and groups. In: Vardy A. (ed.) Codes, Curves and Signals: Common Threads in Communications, pp. 79–97. Kluwer, Boston (1998).

    Chapter  Google Scholar 

  13. Gluesing-Luerssen H.: Fourier-reflexive partitions and MacWilliams identities for additive codes. Des. Codes Crypt. 75, 543–563 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  14. Gluesing-Luerssen H.: Partitions of Frobenius rings induced by the homogeneous weight. Adv. Math. Commun. 8, 191–207 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  15. Greferath M., Schmidt S.: Finite ring combinatorics and MacWilliams’ equivalence theorem. J. Comb. Theory 92A, 17–28 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  16. Haglund J.: \(q\)-rook polynomials and matrices over finite fields. Adv. Appl. Math. 20(4), 450–487 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  17. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{Z}_4}\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  18. Honold T, Landjev I.: MacWilliams identities for linear codes over finite Frobenius rings. In Jungnickel D., Niederreiter H. (eds) Proceedings of The Fifth International Conference on Finite Fields and Applications Fq5, Augsburg, 1999, pp. 276–292. Springer, New York (2001).

  19. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

    Book  MATH  Google Scholar 

  20. Klein A.J., Lewis J.B., Morales A.H.: Counting matrices over finite fields with support on skew Young diagrams and complements of Rothe diagrams. J Algebr. Comb. 39(2), 429–456 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  21. Lam T.Y.: Lectures on Modules and Rings, vol. 189. Graduate Text in MathematicsSpringer, New York (1999).

    MATH  Google Scholar 

  22. Lee C.: Some properties of nonbinary error-correcting codes. IRE Trans. Inform. Theory 4(2), 77–82 (1958).

    Article  MathSciNet  Google Scholar 

  23. Lewis J.B., Liu R., Panova G., Morales A.H., Sam S.V., Zhang Y.X.: Matrices with restricted entries and \(q\)-analogues of permutations. J. Comb. 2(3), 355–396 (2012).

    MathSciNet  MATH  Google Scholar 

  24. MacWilliams F.J.: A theorem on the distribution of weights in a systematic code. Bell Syst. Tech. J. 42(1), 79–94 (1963).

    Article  MathSciNet  Google Scholar 

  25. MacWilliams F.J.: Orthogonal matrices over finite fields. Am. Math. Monthly 76, 152–164 (1969).

    Article  MathSciNet  MATH  Google Scholar 

  26. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North Holland, North Holland Mathematical Library (1977).

    MATH  Google Scholar 

  27. Ravagnani A.: Rank-metric codes and their duality theory. Des. Codes Crypt. 80(1), 197–216 (2016).

    Article  MathSciNet  MATH  Google Scholar 

  28. Silva D., Kschischang F.R.: On metrics for error correction in network coding. IEEE Trans. Inf. Theory 55(12), 5479–5490 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  29. Spiegel E., O’Donnell C.J.: Incidence Algebras. CRC Press, Boca Raton (1997).

    MATH  Google Scholar 

  30. Stanley P.: Enumerative Combinatorics, vol. 1, 2nd edn. Cambridge Stud. Adv. Math., vol. 49. Cambridge University Press, Cambridge (2012).

  31. Stembridge J.R.: Counting points on varieties over finite fields related to a conjecture of Kontsevich. Ann. Comb. 2(4), 365–385 (1998).

    Article  MathSciNet  Google Scholar 

  32. van Lint J.H.: Introduction to Coding Theory, 3rd edn. Springer, New York (1999).

    Book  MATH  Google Scholar 

  33. Zinoviev V.A., Ericson T.: On Fourier invariant partitions of finite abelian groups and the MacWilliams identity for group codes. Probl. Inform. Transm. 32, 117–122 (1996).

    MathSciNet  MATH  Google Scholar 

  34. Zinoviev V.A., Ericson T.: Fourier invariant pairs of partitions of finite abelian groups and association schemes. Probl. Inform. Transm. 45, 221–231 (2009).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Elisa Gorla, Frank R. Kschischang, and the Referees of this paper for help in improving Sect. 7 and the presentation of this work. The author was partially supported by the Swiss National Science Foundation through Grant No. 200021_150207.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Ravagnani.

Additional information

Communicated by J. H. Koolen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravagnani, A. Duality of codes supported on regular lattices, with an application to enumerative combinatorics. Des. Codes Cryptogr. 86, 2035–2063 (2018). https://doi.org/10.1007/s10623-017-0436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-017-0436-3

Keywords

Mathematics Subject Classification

Navigation