Skip to main content
Log in

The linear programming bound for codes over finite Frobenius rings

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

An Erratum to this article was published on 05 September 2007

Abstract

In traditional algebraic coding theory the linear-programming bound is one of the most powerful and restrictive bounds for the existence of both linear and non-linear codes. This article develops a linear-programming bound for block codes on finite Frobenius rings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bosma W, Cannon J, Playoust C (1997) The Magma algebra system. I. The user language. J Symbolic Comput 24(3–4):235–265. Computational algebra and number theory (London, 1993)

    Google Scholar 

  2. Carlet C (1998) \({\mathbb Z}_{2^k}\)-linear codes. IEEE Trans Inf Theory 44(4):1543–1547

    Article  MATH  MathSciNet  Google Scholar 

  3. Constantinescu I (1995) Lineare Codes über Restklassenringen ganzer Zahlen und ihre Automorphismen bezüglich einer verallgemeinerten Hamming-Metrik. Ph.D. Thesis, Technische Universität München

  4. Constantinescu I, Heise W (1997) A metric for codes over residue class rings of integers. Probl Peredachi Informatsii 33(3):22–28

    MathSciNet  Google Scholar 

  5. Duursma IM, Greferath M, Schmidt SE (2000) On the optimal Z 4 codes of type II and length 16. J Comb Theory Ser A 92(1):77–82

    Article  MATH  MathSciNet  Google Scholar 

  6. Duursma IM, Greferath M, Litsyn SN, Schmidt SE (2001) A \({\mathbb Z}_8\)-linear lift of the binary Golay code and a nonlinear binary (96,237,24)-code. IEEE Trans Inf Theory 47:1596–1598

    Article  MATH  MathSciNet  Google Scholar 

  7. Duursma IM, Greferath M, Litsyn SN, Schmidt SE (2001) A \({\mathbb Z}_9\)-linear lift of the ternary [24,12,9]-code inducing a nonlinear ternary (72,325,24)-code. In: Proceedings of optimal codes (OC 2001), Slantchev Briag, Bulgaria, pp 59–64

  8. Ericson T, Simonis J, Tarnanen H, Zinoviev V (1997) F-partitions of cyclic groups. Applicable Algebra in Engineering, Communication and Computing (AAECC 8), Springer, Berlin Heidelberg New York, pp 387–393

  9. GLPK (GNU Linear Programming Kit) available on http://www.gnu.org/software/glpk/

  10. Greferath M, Schmidt SE (2000) Gray isometries for finite chain rings and a non-linear ternary (36,312,15)-Code. IEEE Trans Inf Theory 45:2522–2524

    Article  MathSciNet  Google Scholar 

  11. Greferath M, Schmidt SE (2000) Finite-ring combinatorics and MacWilliams equivalence theorem. J Comb Theory (A) 92:17–28

    Article  MATH  MathSciNet  Google Scholar 

  12. Greferath M, O’Sullivan ME (2004) On bounds for codes over frobenius rings under homogeneous weights. Discrete Math 289:11–24

    Article  MATH  MathSciNet  Google Scholar 

  13. Hammons AR, Kumar PV, Calderbank AR, Sloane NJA, Solé P (1994) The \({\mathbb Z}_4\)-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans Inf Theory 40:301–319

    Article  MATH  Google Scholar 

  14. Honold T (2001) A characterization of finite Frobenius rings. Arch Math (Basel) 76:406–415

    MATH  MathSciNet  Google Scholar 

  15. Honold T, Nechaev AA (1999) Weighted modules and representations of codes. Probl Inf Transm 35:205–223

    MATH  MathSciNet  Google Scholar 

  16. Honold T, Landjev I (1998) Linearly representable codes over chain rings. In: Proceedings of the ACCT 6, Pskov, Russia, pp 135–141

  17. Honold T, Landjev I (2001) MacWilliams identities for linear codes over finite Frobenius rings. Finite fields and applications (Augsburg, 1999), Springer, Berlin Heidelberg New York, pp 276–292

  18. Krawtchouk M (1929) Sur une généralisation des polynômes d’Hermite. Compte Rendu 189: 620–622

    MATH  Google Scholar 

  19. MacWilliams FJ, Sloane NJA (1977) The theory of error-correcting codes. North-Holland Mathematical Library, Amsterdam

    MATH  Google Scholar 

  20. Nechaev AA (1991) Kerdock codes in a cyclic form. Discrete Math Appl 1:365–384

    Article  MATH  MathSciNet  Google Scholar 

  21. Salagean A (1999) On the isometries between \({\mathbb Z}_{p^k}\) and \({\mathbb Z}_p^k\). IEEE Trans Inf Theory 45:2146–2147

    Article  MATH  MathSciNet  Google Scholar 

  22. Wood JA (1999) Duality for modules over finite rings and applications to coding theory. Am J Math 121:555–575

    Article  MATH  Google Scholar 

  23. Zinoviev V, Ericson T (1996) On fourier-invariant partitions of finite abelian groups and the MacWilliams identity for group codes. Probl Inf Transm 32(1): 117–122

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eimear Byrne.

Additional information

Communicated by S. Gao.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10623-007-9120-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byrne, E., Greferath, M. & O’Sullivan, M.E. The linear programming bound for codes over finite Frobenius rings. Des Codes Crypt 42, 289–301 (2007). https://doi.org/10.1007/s10623-006-9035-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-006-9035-4

Keywords

AMS Classifications

Navigation