Skip to main content
Log in

On the number of lattice points in a small sphere and a recursive lattice decoding algorithm

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let L be a lattice in \({\mathbb{R}^n}\). This paper provides two methods to obtain upper bounds on the number of points of L contained in a small sphere centered anywhere in \({\mathbb{R}^n}\). The first method is based on the observation that if the sphere is sufficiently small then the lattice points contained in the sphere give rise to a spherical code with a certain minimum angle. The second method involves Gaussian measures on L in the sense of Banaszczyk (Math Ann 296:625–635, 1993). Examples where the obtained bounds are optimal include some root lattices in small dimensions and the Leech lattice. We also present a natural decoding algorithm for lattices constructed from lattices of smaller dimension, and apply our results on the number of lattice points in a small sphere to conclude on the performance of this algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babai L.: On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6, 1–13 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Banaszczyk W.: New bounds in some transference theorems in the geometry of numbers. Math. Ann. 296, 625–635 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosma W., Cannon J., Playoust C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caire G., Damen M.O., Gamal H.E.: On maximum-likelihood detection and the search for the closest lattice point (English summary). IEEE Trans. Inform. Theory 49, 2389–2402 (2003)

    Article  MathSciNet  Google Scholar 

  5. Caire G., Damen M.O., Gamal H.E.: Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels (English summary). IEEE Trans. Inform. Theory 50, 968–985 (2004)

    Article  MathSciNet  Google Scholar 

  6. Chamizo F., Iwaniec H.: On the sphere problem. Rev. Mat. Iberoam. 11, 417–429 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohn-Vossen S., Hilbert D.: Geometry and the Imagination. Chelsea Publishing Company, London (1999)

    Google Scholar 

  8. Conway J.H., Sloane N.J.A.: Soft decoding techniques for codes and lattices, including the Golay code and the Leech lattice. IEEE Trans. Inform. Theory 32, 41–50 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conway J.H., Sloane N.J.A.: Sphere packings, lattices and groups. Grundlehren der mathematischen Wissenschaften 290. Springer, New York (1988)

    Google Scholar 

  10. Conway J.H., Sloane N.J.A.: On the covering multiplicity of lattices. Discret. Comput. Geom. 8, 109–130 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Delsarte P., Goethals J.M., Seidel J.J.: Spherical codes and designs. Geom. Dedic. 6, 363–388 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fincke U., Pohst M.: Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Math. Comput. 44, 463–471 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Forney G. D.: Coset codes—part II: Binary lattices and related codes. Coding techniques and coding theory. IEEE Trans. Inform. Theory 5, 1152–1187 (1988)

    MathSciNet  Google Scholar 

  14. Goldwasser S., Micciancio D.: Complexity of Lattice Problems, A Cryptographic Perspective. In: Springer International Series in Engineering and Computer Science, vol. 671. Springer, New York (2002).

  15. Griess R. L. Jr.: Rank 72 high minimum norm lattices. J. Num. Theory 130, 1512–1519 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guruswami V., Micciancio D., Regev O.: The complexity of the covering radius problem. Comput. Complex. 14, 90–121 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Heath-Brown D. R.: Lattice points in the sphere. Numb. Theory Prog. 2, 883–892 (1999)

    Google Scholar 

  18. Khot S.: Inapproximability Results for Computational Problems on Lattices.The LLL Algorithm: Survey and Applications, Chap. 14, pp. 453–473. Information Security and Cryptography, Prague (2010).

  19. Mazo J. E., Odlyzko A. M.: Lattice points in high-dimensional spheres. Monatsh. Math. 110, 47–61 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Micciancio D., Regev O.: Worst-case to average-case reductions based on Gaussian measures. SIAM J. Comput. 37, 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Micciancio D., Voulgaris P.: Faster Exponential Time Algorithms for the Shortest Vector Problem, pp. 1468–1480. SODA, Remsen (2010).

  22. Nebe G.: An even unimodular 72-lattice with minimum 8. J. Reine Angew. Math. http://arxiv.org/abs/1008.2862.

  23. Quebbemann H.-G.: A construction of integral lattices. Mathematika 31, 137–140 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  24. Tsang K.-M.: Counting lattice points in the sphere. Bull. Lond. Math. Soc. 32, 679–688 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Turyn R. J.: Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse compression, and surface wave encodings. J. Comb. Theory 16, 313–333 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annika Meyer.

Additional information

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Coding and Cryptography”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, A. On the number of lattice points in a small sphere and a recursive lattice decoding algorithm. Des. Codes Cryptogr. 66, 375–390 (2013). https://doi.org/10.1007/s10623-012-9724-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-012-9724-0

Keywords

Mathematics Subject Classification (2010)

Navigation