Skip to main content
Log in

Lattice points in high-dimensional spheres

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

LetN(x, n, α) denote the number of integer lattice points inside then-dimensional sphere of radius (an)1/2 with center at x. This numberN(x,n, α) is studied for α fixed,n → ∞, andx varying. The average value (asx varies) ofN(x,n, α) is just the volume of the sphere, which is roughly of the form (2 βe, α)n/2. it is shown that the maximal and minimal values ofN (x,n, α) differ from the everage by factors exponential inn, which is in contrast to the usual lattice point problems in bounded dimensions. This lattice point problem arose separately in universal quantization and in low density subset sum problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beck, J.: On a lattice point problem of L. Moser. I. Combinatorica8, 21–47 (1989).

    Google Scholar 

  2. Bellman, R.: A Brief Introduction to Theta Functions. Holt, Rinehart, and Winston. 1961.

  3. Chandrasekharan, K., Narasimhan, R.: On lattice-points in a random sphere. Bull. Amer. Math. Soc.73, 68–71 (1967).

    Google Scholar 

  4. Erdös, P., Gruber, P. M., Hammer, J.: Lattice Points. Longman. 1989.

  5. Fricker, F.: Einführung in die Gitterpunktlehre. Basel: Birkhäuser. 1982.

    Google Scholar 

  6. Frieze, A. M.: On the Lagarias—Odlyzko algorithm for the subset sum problem. SIAM. J. Comp.15, 536–539 (1986).

    Google Scholar 

  7. Grosswald, E.: Representations of Integers as Sums of Squares. Berlin-Heidelberg—New York: Springer. 1985.

    Google Scholar 

  8. Hammer, J.: Unsolved Problems Concerning Lattice Points. London: Pitman. 1977.

    Google Scholar 

  9. Lagarias, J. C., Odlyzko, A. M.: Solving low-density subset sum problems. J. Assoc. Comp. Mach.32, 229–246 (1985). (Preliminary version in Proc. 24th IEEE Found. Computer Sci. Symp., 1–10 (1983).

    Google Scholar 

  10. Montgomery, H. L.: Minimal theta functions. Glasgow Math. J.30 75–85 (1988).

    Google Scholar 

  11. Rush, J., Sloane, N. J. A.: An improvement to the Minkowski—Hlawka bound for packing superballs. Mathematika34, 8–18 (1987).

    Google Scholar 

  12. Vinogradov, A. I., Skriganov, M. M.: The number of lattice points inside the sphere with variable center. Analytic number theory and the theory of functions, 2. Zap. Naučn. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI)91, 25–30, 180 (1979).

    Google Scholar 

  13. Walfisz, A.: Gitterpunkte in mehrdimensionalen Kugeln. Warsaw: Polish Scientific Publ. 1957.

    Google Scholar 

  14. Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis. 4th ed. Cambridge: Univ. Press. 1927.

    Google Scholar 

  15. Yudin, A. A.: On the number of integer points in the displaced circles. Acta Arith.14, 141–152 (1967/68).

    Google Scholar 

  16. Ziv, J.: On universal quantization. IEEE Trans. Information TheoryIT31, 344–347 (1985).

    Google Scholar 

  17. Elkies, N. D., Odlyzko, A. M., Rush, J. A.: Manuscript in preparation.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazo, J.E., Odlyzko, A.M. Lattice points in high-dimensional spheres. Monatshefte für Mathematik 110, 47–61 (1990). https://doi.org/10.1007/BF01571276

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01571276

Keywords

Navigation