Skip to main content

Advertisement

Log in

Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Approximately 80% of the human genome harbors biochemical marks of active transcription that its majority transcribes to noncoding RNAs, namely long noncoding RNAs (lncRNAs). LncRNAs are heterogeneous RNA transcripts that regulate critical biological processes such as cell survival and death. They involve in the progression of different cancers by affecting transcriptional and post-transcriptional modifications as well as epigenetic control of numerous tumor suppressors and oncogenes. Recent findings show that aberrant expression of lncRNAs is associated with tumor initiation, progression, invasion, and overall survival of patients with gastrointestinal (GI) cancers. Some lncRNAs play as tumor suppressors in all GI cancers, but others play as tumor promoters. However, some other lncRNAs might function as a tumor suppressor in one GI cancer, but as a tumor promoter in another GI cancer type. This fact highlights possible context dependency of the expression patterns and roles of at least some lncRNAs in GI cancer development and progression. Here, we review the functional relation of lncRNAs involved in the development and progression of GI cancer by focusing on their roles as tumor suppressor and tumor promoter genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Xie H, Ma B, Gao Q, Zhan H, et al. Long non-coding RNA CRNDE in cancer prognosis: review and meta-analysis. Clinica Chimica Acta. 2018;485:262–271.

    Article  CAS  Google Scholar 

  2. Aguadé-Gorgorió G, Solé R. Adaptive dynamics of unstable cancer populations: the canonical equation. Evol Appl. 2018;11:1283–1292.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu K, Zhang N, Ma J, Huang J, et al. Long noncoding RNA FAL1 promotes proliferation and inhibits apoptosis of human colon cancer cells. IUBMB Life. 2018;70:1093–1100.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang B, Pan X, Cobb GP, Anderson TA. microRNAs as oncogenes and tumor suppressors. Dev Biol. 2007;302:1–12.

    Article  CAS  PubMed  Google Scholar 

  5. Lee EY, Muller WJ. Oncogenes and tumor suppressor genes. Cold Spring Harbor Perspect Biol. 2010;2:a003236.

    CAS  Google Scholar 

  6. Baeissa HM, Benstead-Hume G, Richardson CJ, Pearl FM. Mutational patterns in oncogenes and tumour suppressors. Biochem Soc Trans. 2016;44:925–931.

    Article  CAS  PubMed  Google Scholar 

  7. Djebali S, Davis CA, Merkel A, Dobin A, et al. Landscape of transcription in human cells. Nature. 2012;489:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Consortium F. A promoter-level mammalian expression atlas. Nature. 2014;507:462.

    Article  CAS  Google Scholar 

  9. Balas MM, Johnson AM. Exploring the mechanisms behind long noncoding RNAs and cancer. Non-Coding RNA Res. 2018;3:108–117.

    Article  CAS  Google Scholar 

  10. Sun W, Yang Y, Xu C, Xie Y, Guo J. Roles of long noncoding RNAs in gastric cancer and their clinical applications. J Cancer Res Clin Oncol. 2016;142:2231–2237.

    Article  CAS  PubMed  Google Scholar 

  11. Lu S, Su Z, Fu W, Cui Z, et al. Altered expression of long non-coding RNA GAS5 in digestive tumors. Biosci Rep. 2019;39:BSR20180789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeng S, Xiao Y-F, Tang B, Hu C-J, et al. Long noncoding RNA in digestive tract cancers: function, mechanism, and potential biomarker. The Oncologist. 2015;20:898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Parsons C, Tayoun AM, Benando B, Ragusa G, et al. The role of long noncoding RNAs in cancer metastasis. J Cancer Metastasis Treat. 2018;4:1–23.

    Article  CAS  Google Scholar 

  14. Fanelli GN, Gasparini P, Coati I, Cui R, et al. LONG-NONCODING RNAs in gastroesophageal cancers. Non-coding RNA Res. 2018;3:195–212.

    Article  CAS  Google Scholar 

  15. Zheng Y, Yang C, Tong S, Ding Y, et al. Genetic variation of long non-coding RNA TINCR contribute to the susceptibility and progression of colorectal cancer. Oncotarget. 2017;8:33536.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ding Z, Lan H, Xu R, Zhou X, Pan Y. LncRNA TP73-AS1 accelerates tumor progression in gastric cancer through regulating miR-194-5p/SDAD1 axis. Pathol-Res Pract. 2018;214:1993–1999.

    Article  CAS  PubMed  Google Scholar 

  17. Zhan L, Li J, Wei B. Long non-coding RNAs in ovarian cancer. J Exp Clin Cancer Res. 2018;37:120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Luo Y, Ouyang J, Zhou D, Zhong S, et al. Long noncoding RNA GAPLINC promotes cells migration and invasion in colorectal cancer cell by regulating miR-34a/c-MET signal pathway. Digest Dis Sci. 2018;63:890–899.

    Article  CAS  PubMed  Google Scholar 

  19. Chen S, Zhu J, Wang F, Guan Z, et al. LncRNAs and their role in cancer stem cells. Oncotarget. 2017;8:110685.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sanchez Calle A, Kawamura Y, Yamamoto Y, Takeshita F, Ochiya T. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109:2093–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jin L, He Y, Tang S, Huang S. LncRNA GHET1 predicts poor prognosis in hepatocellular carcinoma and promotes cell proliferation by silencing KLF2. J Cell Physiol. 2018;233:4726–4734.

    Article  CAS  PubMed  Google Scholar 

  22. Adriaens C, Marine J-C. NEAT1-containing Paraspeckles: central hubs in stress response and tumor formation. Cell Cycle. 2017;16:137.

    Article  CAS  PubMed  Google Scholar 

  23. Ma D, Cao Y, Wang Z, He J, et al. CCAT1 lncRNA promotes inflammatory bowel disease malignancy by destroying intestinal barrier via downregulating miR-185-3p. Inflam Bowel Dis. 2019;25:862–874.

    Article  Google Scholar 

  24. Huang T, Wang M, Huang B, Chang A, et al. Long noncoding RNAs in the mTOR signaling network: biomarkers and therapeutic targets. Apoptosis. 2018;23:255–264.

    Article  CAS  PubMed  Google Scholar 

  25. Ding J, Li D, Gong M, Wang J, et al. Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. OncoTargets Ther. 2014;7:1625.

    Article  CAS  Google Scholar 

  26. Zhang X-W, Bu P, Liu L, Zhang X-Z, Li J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem Biophys Res Commun. 2015;462:227–232.

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi Y, Sawada G, Kurashige J, Uchi R, et al. Amplification of PVT-1 is involved in poor prognosis via apoptosis inhibition in colorectal cancers. Br J Cancer. 2014;110:164.

    Article  CAS  PubMed  Google Scholar 

  28. Guo J, Hao C, Wang C, Li L. Long noncoding RNA PVT1 modulates hepatocellular carcinoma cell proliferation and apoptosis by recruiting EZH2. Cancer Cell Int. 2018;18:98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu B-Q, Jiang Y, Zhu F, Sun D-L, He X-Z. Long noncoding RNA PVT1 promotes EMT and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. Technol Cancer Res Treatment. 2017;16:819–827.

    Article  CAS  Google Scholar 

  30. Li P-D, Hu J-L, Ma C, Ma H, et al. Upregulation of the long non-coding RNA PVT1 promotes esophageal squamous cell carcinoma progression by acting as a molecular sponge of miR-203 and LASP1. Oncotarget. 2017;8:34164.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Chen J, Yu Y, Li H, Hu Q, et al. Long non-coding RNA PVT1 promotes tumor progression by regulating the miR-143/HK2 axis in gallbladder cancer. Molecular Cancer. 2019;18:33.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao J, Du P, Cui P, Qin Y, et al. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene. 2018;37:4094.

    Article  CAS  PubMed  Google Scholar 

  33. Xu M-D, Wang Y, Weng W, Wei P, et al. A positive feedback loop of lncRNA-PVT1 and FOXM1 facilitates gastric cancer growth and invasion. Clin Cancer Res. 2017;23:2071–2080.

    Article  CAS  PubMed  Google Scholar 

  34. Kong R, Zhang E-B, Yin D-D, You L-H, et al. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol Cancer. 2015;14:82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Huppi K, Volfovsky N, Runfola T, Jones TL, et al. The identification of microRNAs in a genomically unstable region of human chromosome 8q24. Mol Cancer Res. 2008;6:212–221.

    Article  CAS  PubMed  Google Scholar 

  36. Li T, Meng X-L, Yang W-Q. Long noncoding RNA PVT1 acts as a “Sponge” to inhibit microRNA-152 in gastric cancer cells. Digest Dis Sci. 2017;62:3021–3028.

    Article  CAS  PubMed  Google Scholar 

  37. Huang T, Liu HW, Chen JQ, Wang SH, et al. The long noncoding RNA PVT1 functions as a competing endogenous RNA by sponging miR-186 in gastric cancer. Biomed Pharmacother. 2017;88:302–308.

    Article  CAS  PubMed  Google Scholar 

  38. Xin Y, Li Z, Shen J, Chan MT, Wu WKK. CCAT 1: a pivotal oncogenic long non-coding RNA in human cancers. Cell Prolifer. 2016;49:255–260.

    Article  CAS  Google Scholar 

  39. Mizrahi I, Mazeh H, Grinbaum R, Beglaibter N, et al. Colon cancer associated transcript-1 (CCAT1) expression in adenocarcinoma of the stomach. J Cancer. 2015;6:105.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Li Y, Jing F, Ding Y, He Q, et al. Long noncoding RNA CCAT1 polymorphisms are associated with the risk of colorectal cancer. Cancer Genet. 2018;222:13–19.

    Article  PubMed  CAS  Google Scholar 

  41. Yang F, Xue X, Bi J, Zheng L, et al. Long noncoding RNA CCAT1, which could be activated by c-Myc, promotes the progression of gastric carcinoma. J Cancer Res Clin Oncol. 2013;139:437–445.

    Article  CAS  PubMed  Google Scholar 

  42. He X, Tan X, Wang X, Jin H, et al. C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumor Biol. 2014;35:12181–12188.

    Article  CAS  Google Scholar 

  43. Li B, Shi C, Zhao J, Li B. Long noncoding RNA CCAT1 functions as a ceRNA to antagonize the effect of miR-410 on the down-regulation of ITPKB in human HCT-116 and HCT-8 cells. Oncotarget. 2017;8:92855.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Li Y, Zhu G, Ma Y, Qu H. LncRNA CCAT1 contributes to the growth and invasion of gastric cancer via targeting miR-219-1. J Cell Biochem. 2017.

  45. Zhou B, Wang Y, Jiang J, Jiang H, et al. The long noncoding RNA colon cancer-associated transcript-1/miR-490 axis regulates gastric cancer cell migration by targeting hnRNPA1. IUBMB Life. 2016;68:201–210.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu H, Zhao H, Zhang L, Xu J, et al. Dandelion root extract suppressed gastric cancer cells proliferation and migration through targeting lncRNA-CCAT1. Biomed Pharmacother. 2017;93:1010–1017.

    Article  CAS  PubMed  Google Scholar 

  47. Zhu H-Q, Zhou X, Chang H, Li H-G, et al. Aberrant expression of CCAT1 regulated by c-Myc predicts the prognosis of hepatocellular carcinoma. Asian Pac J Cancer Prev. 2015;16:5181–5185.

    Article  PubMed  Google Scholar 

  48. Deng L, Yang S-B, Xu F-F, Zhang J-H. Long noncoding RNA CCAT1 promotes hepatocellular carcinoma progression by functioning as let-7 sponge. J Exp Clin Cancer Res. 2015;34:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Yu Q, Zhou X, Xia Q, Shen J, et al. Long non-coding RNA CCAT1 that can be activated by c-Myc promotes pancreatic cancer cell proliferation and migration. Am J Transl Res. 2016;8:5444.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang E, Han L, Yin D, He X, et al. H3K27 acetylation activated-long non-coding RNA CCAT1 affects cell proliferation and migration by regulating SPRY4 and HOXB13 expression in esophageal squamous cell carcinoma. Nucl Acids Res. 2016;45:3086–3101.

    Article  CAS  PubMed Central  Google Scholar 

  51. Hu Y, Wang J, Qian J, Kong X, et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014;74:6890–6902.

    Article  CAS  PubMed  Google Scholar 

  52. Yang P, Chen T, Xu Z, Zhu H, et al. Long noncoding RNA GAPLINC promotes invasion in colorectal cancer by targeting SNAI2 through binding with PSF and NONO. Oncotarget. 2016;7:42183.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Diao L, Wang S, Sun Z. Long noncoding RNA GAPLINC promotes gastric cancer cell proliferation by acting as a molecular sponge of miR-378 to modulate MAPK1 expression. OncoTargets Ther. 2018;11:2797.

    Article  Google Scholar 

  54. Liu L, Zhao X, Zou H, Bai R, et al. Hypoxia promotes gastric cancer malignancy partly through the HIF-1α dependent transcriptional activation of the long non-coding RNA GAPLINC. Front Physiol. 2016;7:420.

    PubMed  PubMed Central  Google Scholar 

  55. Liu J, Liu L, Wan J-X, Song Y. Long noncoding RNA SNHG20 promotes gastric cancer progression by inhibiting p21 expression and regulating the GSK-3β/β-catenin signaling pathway. Oncotarget. 2017;8:80700.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Wu J, Zhao W, Wang Z, Xiang X, et al. Long non-coding RNA SNHG20 promotes the tumorigenesis of oral squamous cell carcinoma via targeting miR-197/LIN28 axis. J Cell Mol Med. 2019;23:680–688.

    Article  CAS  PubMed  Google Scholar 

  57. Li C, Zhou L, He J, Fang X-Q, et al. Increased long noncoding RNA SNHG20 predicts poor prognosis in colorectal cancer. BMC Cancer. 2016;16:655.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cui N, Liu J, Xia H, Xu D. LncRNA SNHG20 contributes to cell proliferation and invasion by upregulating ZFX expression sponging miR-495-3p in gastric cancer. J Cell Biochem. 2019;120:3114–3123.

    Article  CAS  PubMed  Google Scholar 

  59. Gao P, Fan R, Ge T. SNHG20 serves as a predictor for prognosis and promotes cell growth in oral squamous cell carcinoma. Oncol Lett. 2019;17:951–957.

    CAS  PubMed  Google Scholar 

  60. Zhang D, Cao C, Liu L, Wu D. Up-regulation of LncRNA SNHG20 predicts poor prognosis in hepatocellular carcinoma. J Cancer. 2016;7:608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu J, Lu C, Xiao M, Jiang F, et al. Long non-coding RNA SNHG20 predicts a poor prognosis for HCC and promotes cell invasion by regulating the epithelial-to-mesenchymal transition. Biomed Pharmacother. 2017;89:857–863.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang C, Jiang F, Su C, Xie P, Xu L. Upregulation of long noncoding RNA SNHG20 promotes cell growth and metastasis in esophageal squamous cell carcinoma via modulating ATM-JAK-PD-L1 pathway. J Cell Biochem. 2019;120:11642–11650.

    Article  CAS  Google Scholar 

  63. Wang L, Jiang F, Xia X, Zhang B. LncRNA FAL1 promotes carcinogenesis by regulation of miR-637/NUPR1 pathway in colorectal cancer. Int J Biochem Cell Biol. 2019;106:46–56.

    Article  CAS  PubMed  Google Scholar 

  64. Li B, Mao R, Liu C, Zhang W, et al. LncRNA FAL1 promotes cell proliferation and migration by acting as a CeRNA of miR-1236 in hepatocellular carcinoma cells. Life Sci. 2018;197:122–129.

    Article  CAS  PubMed  Google Scholar 

  65. Liu T, Wang Z, Zhou R, Liang W. Focally amplified lncRNA on chromosome 1 regulates apoptosis of esophageal cancer cells via DRP1 and mitochondrial dynamics. IUBMB Life. 2019;71:254–260.

    Article  CAS  PubMed  Google Scholar 

  66. Zhu C, Xiao D, Dai L, Xu H, et al. Highly expressed lncRNA FAL1 promotes the progression of gastric cancer by inhibiting PTEN. Eur Rev Med Pharmacol Sci. 2018;22:8257–8264.

    PubMed  Google Scholar 

  67. Yang F, Xue X, Zheng L, Bi J, et al. Long non-coding RNA GHET1 promotes gastric carcinoma cell proliferation by increasing c-Myc mRNA stability. FEBS J. 2014;281:802–813.

    Article  CAS  PubMed  Google Scholar 

  68. Xia Y, Yan Z, Wan Y, Wei S, et al. Knockdown of long noncoding RNA GHET1 inhibits cell-cycle progression and invasion of gastric cancer cells. Mol Med Rep. 2018;18:3375–3381.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu H, Zhen Q, Fan Y. LncRNA GHET1 promotes esophageal squamous cell carcinoma cells proliferation and invasion via induction of EMT. Int J Biol Mark. 2017;32:403–408.

    Article  Google Scholar 

  70. Zhou J, Li X, Wu M, Lin C, et al. Knockdown of long noncoding RNA GHET1 inhibits cell proliferation and invasion of colorectal cancer. Oncol Res Featur Preclin Clin Cancer Therap. 2016;23:303–309.

    Google Scholar 

  71. Li J, Jiang X, Li Z, Huang L, et al. Long noncoding RNA GHET1 in human cancer. Clinica Chimica Acta. 2018.

  72. Huang H, Liao W, Zhu X, Liu H, Cai L. Knockdown of long noncoding RNA GHET1 inhibits cell activation of gastric cancer. Biomed Pharmacother. 2017;92:562–568.

    Article  CAS  PubMed  Google Scholar 

  73. Ding G, Li W, Liu J, Zeng Y, et al. LncRNA GHET1 activated by H3K27 acetylation promotes cell tumorigenesis through regulating ATF1 in hepatocellular carcinoma. Biomed Pharmacother. 2017;94:326–331.

    Article  CAS  PubMed  Google Scholar 

  74. Wei C-C, Nie F-Q, Jiang L-L, Chen Q-N, et al. The pseudogene DUXAP10 promotes an aggressive phenotype through binding with LSD1 and repressing LATS2 and RRAD in non small cell lung cancer. Oncotarget. 2017;8:5233.

    Article  PubMed  Google Scholar 

  75. Wang Z, Ren B, Huang J, Yin R, et al. LncRNA DUXAP10 modulates cell proliferation in esophageal squamous cell carcinoma through epigenetically silencing p21. Cancer Biol Ther. 2018;19:998–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lian Y, Xiao C, Yan C, Chen D, et al. Knockdown of pseudogene derived from lncRNA DUXAP10 inhibits cell proliferation, migration, invasion, and promotes apoptosis in pancreatic cancer. J Cell Biochem. 2018;119:3671–3682.

    Article  CAS  PubMed  Google Scholar 

  77. Xu Y, Yu X, Wei C, Nie F, et al. Over-expression of oncigenic pesudogene DUXAP10 promotes cell proliferation and invasion by regulating LATS1 and β-catenin in gastric cancer. J Exp Clin Cancer Res. 2018;37:13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Lian Y, Xu Y, Xiao C, Xia R, et al. The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN. Sci Rep. 2017;7:7312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Shang C, Sun L, Zhang J, Zhao B, et al. Silence of cancer susceptibility candidate 9 inhibits gastric cancer and reverses chemoresistance. Oncotarget. 2017;8:15393.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Wu Y, Hu L, Liang Y, Li J, et al. Up-regulation of lncRNA CASC9 promotes esophageal squamous cell carcinoma growth by negatively regulating PDCD4 expression through EZH2. Mol Cancer. 2017;16:150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Klingenberg M, Groß M, Goyal A, Polycarpou-Schwarz M, et al. The lncRNA CASC9 and RNA binding protein HNRNPL form a complex and co-regulate genes linked to AKT signaling. Hepatology. 2018;68:1817–1832.

    Article  CAS  PubMed  Google Scholar 

  82. Pan Z, Mao W, Bao Y, Zhang M, et al. The long noncoding RNA CASC9 regulates migration and invasion in esophageal cancer. Cancer Med. 2016;5:2442–2447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Liang Y, Chen X, Wu Y, Li J, et al. LncRNA CASC9 promotes esophageal squamous cell carcinoma metastasis through upregulating LAMC2 expression by interacting with the CREB-binding protein. Cell Death Differ. 2018;25:1980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Leng C, Zhang Z-G, Chen W-X, Luo H-P, et al. An integrin beta4-EGFR unit promotes hepatocellular carcinoma lung metastases by enhancing anchorage independence through activation of FAK–AKT pathway. Cancer Lett. 2016;376:188–196.

    Article  CAS  PubMed  Google Scholar 

  85. Fei T, Chen Y, Xiao T, Li W, et al. Genome-wide CRISPR screen identifies HNRNPL as a prostate cancer dependency regulating RNA splicing. Pro Natl Acad Sci. 2017;114:E5207–E5215.

    Article  CAS  Google Scholar 

  86. Yang Y, Chen D, Liu H, Yang K. Increased expression of lncRNA CASC9 promotes tumor progression by suppressing autophagy-mediated cell apoptosis via the AKT/mTOR pathway in oral squamous cell carcinoma. Cell Death Dis. 2019;10:41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Chen G, Sun W, Hua X, Zeng W, Yang L. Long non-coding RNA FOXD2-AS1 aggravates nasopharyngeal carcinoma carcinogenesis by modulating miR-363-5p/S100A1 pathway. Gene. 2018;645:76–84.

    Article  CAS  PubMed  Google Scholar 

  88. Yang X, Duan B, Zhou X. Long non-coding RNA FOXD2-AS1 functions as a tumor promoter in colorectal cancer by regulating EMT and Notch signaling pathway. Eur Rev Med Pharmacol Sci. 2017;21:3586–3591.

    CAS  PubMed  Google Scholar 

  89. Chang Y, Zhang J, Zhou C, Qiu G, et al. Long non-coding RNA FOXD2-AS1 plays an oncogenic role in hepatocellular carcinoma by targeting miR-206. Oncol Rep. 2018;40:3625–3634.

    CAS  PubMed  Google Scholar 

  90. Bao J, Zhou C, Zhang J, Mo J, et al. Upregulation of the long noncoding RNA FOXD2-AS1 predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Biom. 2018;21:527–533.

    Article  CAS  Google Scholar 

  91. Xu T-P, Wang W-Y, Ma P, Shuai Y, et al. Upregulation of the long noncoding RNA FOXD2-AS1 promotes carcinogenesis by epigenetically silencing EphB3 through EZH2 and LSD1, and predicts poor prognosis in gastric cancer. Oncogene. 2018;37:5020–5036.

    Article  CAS  PubMed  Google Scholar 

  92. Zhu Y, Qiao L, Zhou Y, Ma N, et al. Long non-coding RNA FOXD 2-AS 1 contributes to colorectal cancer proliferation through its interaction with micro RNA-185-5p. Cancer Sci. 2018;109:2235–2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yan Y, Li S, Wang S, Rubegni P, et al. Long noncoding RNA HAND2-AS1 inhibits cancer cell proliferation, migration, and invasion in esophagus squamous cell carcinoma by regulating microRNA-21. J Cell Biochem. 2019;120:9564–9571.

    Article  CAS  PubMed  Google Scholar 

  94. Shi B, Zhang X, Chao L, Zheng Y, et al. Comprehensive analysis of key genes, microRNAs and long non-coding RNAs in hepatocellular carcinoma. FEBS Open Biol. 2018;8:1424–1436.

    Article  CAS  Google Scholar 

  95. Zhou J, Lin J, Zhang H, Zhu F, Xie R. LncRNA HAND2-AS1 sponging miR-1275 suppresses colorectal cancer progression by upregulating KLF14. Biochem Biophys Res Commun. 2018;503:1848–1853.

    Article  CAS  PubMed  Google Scholar 

  96. Wan L, Kong J, Tang J, Wu Y, et al. HOTAIRM 1 as a potential biomarker for diagnosis of colorectal cancer functions the role in the tumour suppressor. J Cell Mol Med. 2016;20:2036–2044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lu R, Zhao G, Yang Y, Jiang Z, et al. Long noncoding RNA HOTAIRM1 inhibits cell progression by regulating miR-17-5p/PTEN axis in gastric cancer. J Cell Biochem. 2019;120:4952–4965.

    Article  CAS  PubMed  Google Scholar 

  98. Zhou Y, Gong B, Jiang Z-L, Zhong S, et al. Microarray expression profile analysis of long non-coding RNAs in pancreatic ductal adenocarcinoma. Int J Oncol. 2016;48:670–680.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y, Mi L, Xuan Y, Gao C, et al. LncRNA HOTAIRM1 inhibits the progression of hepatocellular carcinoma by inhibiting the Wnt signaling pathway. Eur Rev Med Pharmacol Sci. 2018;22:4861–4868.

    CAS  PubMed  Google Scholar 

  100. Liu L, Zhang D, Wu D. 748 long non-coding RNA miR22HG represses hepatocellular carcinoma cell invasion by deriving miR-22 and targeting HMGB1. Gastroenterology. 2016;150:S1045–S1046.

    Article  Google Scholar 

  101. Dong Y, Yan W, Zhang S-L, Zhang M-Z-H, et al. Prognostic values of long non-coding RNA MIR22HG for patients with hepatocellular carcinoma after hepatectomy. Oncotarget. 2017;8:114041.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wu Y, Wang PS, Wang BG, Xu L, et al. Genomewide identification of a novel six-LncRNA signature to improve prognosis prediction in resectable hepatocellular carcinoma. Cancer Med. 2018;7:6219–6233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Cui Z, An X, Li J, Liu Q, Liu W. LncRNA MIR22HG negatively regulates miR-141-3p to enhance DAPK1 expression and inhibits endometrial carcinoma cells proliferation. Biomed Pharmacother. 2018;104:223–228.

    Article  CAS  PubMed  Google Scholar 

  104. Su W, Feng S, Chen X, Yang X, et al. Silencing of long noncoding RNA MIR22HG triggers cell survival/death signaling via oncogenes YBX1, MET, and p21 in lung cancer. Cancer Res. 2018;78:3207–3219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhang D-Y, Zou X-J, Cao C-H, Zhang T, et al. Identification and functional characterization of long non-coding RNA MIR22HG as a tumor suppressor for hepatocellular carcinoma. Theranostics. 2018;8:3751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Dai W, Zhang G, Makeyev EV. RNA-binding protein HuR autoregulates its expression by promoting alternative polyadenylation site usage. Nucl Acids Res. 2011;40:787–800.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  107. Wu Y, Zhou Y, Huan L, Xu L, et al. LncRNA MIR22HG inhibits growth, migration and invasion through regulating the miR-10a-5p/NCOR2 axis in hepatocellular carcinoma cells. Cancer Sci. 2019;110:973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Li H, Wang Y. Long noncoding RNA (lncRNA) MIR22HG suppresses gastric cancer progression through attenuating NOTCH2 signaling. Med Sci Monitor Int Med J Exp Clin Res. 2019;25:656.

    CAS  Google Scholar 

  109. Song H, Sun W, Ye G, Ding X, et al. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J Transl Med. 2013;11:225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Yue B, Sun B, Liu C, Zhao S, et al. Long non-coding RNA Fer-1-like protein 4 suppresses oncogenesis and exhibits prognostic value by associating with miR-106a-5p in colon cancer. Cancer Sci. 2015;106:1323–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Ma W, Zhang C, Li H, Gu J, et al. LncRNA FER1L4 suppressed cancer cell growth and invasion in esophageal squamous cell carcinoma. Eur Rev Med Pharmacol Sci. 2018;22:2638–2645.

    CAS  PubMed  Google Scholar 

  112. Xia T, Chen S, Jiang Z, Shao Y, et al. Long noncoding RNA FER1L4 suppresses cancer cell growth by acting as a competing endogenous RNA and regulating PTEN expression. Sci Rep. 2015;5:13445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wu J, Huang J, Wang W, Xu J, et al. Long non-coding RNA Fer-1-like protein 4 acts as a tumor suppressor via miR-106a-5p and predicts good prognosis in hepatocellular carcinoma. Cancer Biom. 2017;20:55–65.

    Article  CAS  Google Scholar 

  114. Xia T, Liao Q, Jiang X, Shao Y, et al. Long noncoding RNA associated-competing endogenous RNAs in gastric cancer. Sci Rep. 2014;4:6088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Sun X, Zheng G, Li C, Liu C. Long non-coding RNA Fer-1-like family member 4 suppresses hepatocellular carcinoma cell proliferation by regulating PTEN in vitro and in vivo. Mol Med Rep. 2019;19:685–692.

    CAS  PubMed  Google Scholar 

  116. Wang PL, Liu B, Xia Y, Pan CF, et al. Long non-coding RNA-Low Expression in Tumor inhibits the invasion and metastasis of esophageal squamous cell carcinoma by regulating p53 expression. Mol Med Rep. 2016;13:3074–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Weidle UH, Birzele F, Kollmorgen G, Rueger R. Long non-coding RNAs and their role in metastasis. Cancer Genom-Proteom. 2017;14:143–160.

    Article  CAS  Google Scholar 

  118. Chen Z, Lin J, Wu S, Xu C, et al. Up-regulated miR-548 k promotes esophageal squamous cell carcinoma progression via targeting long noncoding RNA-LET. Exp Cell Res. 2018;362:90–101.

    Article  CAS  PubMed  Google Scholar 

  119. Tian J, Hu X, Gao W, Zhang J, et al. Identification of the long non-coding RNA LET as a novel tumor suppressor in gastric cancer. Mol Med Rep. 2017;15:2229–2234.

    Article  CAS  PubMed  Google Scholar 

  120. Ma MZ, Kong X, Weng MZ, Zhang MD, et al. Long non-coding RNA-LET is a positive prognostic factor and exhibits tumor-suppressive activity in gallbladder cancer. Mol Carcinogen. 2015;54:1397–1406.

    Article  CAS  Google Scholar 

  121. Mao Z, Li H, Du B, Cui K, et al. LncRNA DANCR promotes migration and invasion through suppression of lncRNA-LET in gastric cancer cells. Biosci Rep. 2017;37:BSR20171070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhou B, Jing X-Y, Wu J-Q, Xi H-F, Lu G-J. Down-regulation of long non-coding RNA LET is associated with poor prognosis in gastric cancer. Int J Clin Exp Pathol. 2014;7:8893.

    PubMed  PubMed Central  Google Scholar 

  123. He Y, Meng X-M, Huang C, Wu B-M, et al. Long noncoding RNAs: novel insights into hepatocelluar carcinoma. Cancer Lett. 2014;344:20–27.

    Article  CAS  PubMed  Google Scholar 

  124. Xu T, Liu X, Xia R, Yin L, et al. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene. 2015;34:5648.

    Article  CAS  PubMed  Google Scholar 

  125. Xu Y, Qiu M, Chen Y, Wang J, et al. Long noncoding RNA, tissue differentiation-inducing nonprotein coding RNA is upregulated and promotes development of esophageal squamous cell carcinoma. Dis Esophagus. 2016;29:950–958.

    Article  CAS  PubMed  Google Scholar 

  126. Tian F, Xu J, Xue F, Guan E, Xu X. TINCR expression is associated with unfavorable prognosis in patients with hepatocellular carcinoma. Biosci Rep. 2017;37:301.

    Article  CAS  Google Scholar 

  127. Xu T-P, Wang Y-F, Xiong W-L, Ma P, et al. E2F1 induces TINCR transcriptional activity and accelerates gastric cancer progression via activation of TINCR/STAU1/CDKN2B signaling axis. Cell Death Dis. 2017;8:e2837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Chen Z, Liu H, Yang H, Gao Y, et al. The long noncoding RNA, TINCR, functions as a competing endogenous RNA to regulate PDK1 expression by sponging miR-375 in gastric cancer. OncoTargets Ther. 2017;10:3353.

    Article  Google Scholar 

  129. Zhang Z-y, Lu Y-x, Zhang Z-y, Chang Y-y, et al. Loss of TINCR expression promotes proliferation, metastasis through activating EpCAM cleavage in colorectal cancer. Oncotarget. 2016;7:22639.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zhang X, Yao J, Shi H, Gao B, Zhang L. LncRNA TINCR/microRNA-107/CD36 regulates cell proliferation and apoptosis in colorectal cancer via PPAR signaling pathway based on bioinformatics analysis. Biol Chem. 2019;400:663–675.

    Article  CAS  PubMed  Google Scholar 

  131. Pang JCS, Li KKW, Lau KM, Ng YL, et al. KIAA0495/PDAM is frequently downregulated in oligodendroglial tumors and its knockdown by siRNA induces cisplatin resistance in glioma cells. Brain Pathol. 2010;20:1021–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Jia Z, Peng J, Yang Z, Chen J, et al. Long non-coding RNA TP73-AS1 promotes colorectal cancer proliferation by acting as a ceRNA for miR-103 to regulate PTEN expression. Gene. 2019;685:222–229.

    Article  CAS  PubMed  Google Scholar 

  133. Cai Y, Yan P, Zhang G, Yang W, et al. Long non-coding RNA TP73-AS1 sponges miR-194 to promote colorectal cancer cell proliferation, migration and invasion via up-regulating TGFα. Cancer Biom. 2018(Preprint):1–12.

  134. Li S, Huang Y, Huang Y, Fu Y, et al. The long non-coding RNA TP73-AS1 modulates HCC cell proliferation through miR-200a-dependent HMGB1/RAGE regulation. J Exp Clin Cancer Res. 2017;36:51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Peng J. si-TP73-AS1 suppressed proliferation and increased the chemotherapeutic response of GC cells to cisplatin. Oncol Lett. 2018;16:3706–3714.

    PubMed  PubMed Central  Google Scholar 

  136. Xiong X, Shi Q, Yang X, Wang W, Tao J. LINC00052 functions as a tumor suppressor through negatively modulating miR-330-3p in pancreatic cancer. J Cell Physiol. 2019;234:15619–15626.

    Article  CAS  PubMed  Google Scholar 

  137. Xiong D, Sheng Y, Ding S, Chen J, et al. LINC00052 regulates the expression of NTRK3 by miR-128 and miR-485-3p to strengthen HCC cells invasion and migration. Oncotarget. 2016;7:47593.

    Article  PubMed  PubMed Central  Google Scholar 

  138. Zhu L, Yang N, Chen J, Zeng T, et al. LINC00052 upregulates EPB41L3 to inhibit migration and invasion of hepatocellular carcinoma by binding miR-452-5p. Oncotarget. 2017;8:63724.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Yan S, Shan X, Chen K, Liu Y, et al. LINC00052/miR-101-3p axis inhibits cell proliferation and metastasis by targeting SOX9 in hepatocellular carcinoma. Gene. 2018;679:138–149.

    Article  CAS  PubMed  Google Scholar 

  140. Shan Y, Ying R, Jia Z, Kong W, et al. LINC00052 promotes gastric cancer cell proliferation and metastasis via activating the Wnt/β-catenin signaling pathway. Oncol Res Featur Preclin Clin Cancer Therap. 2017;25:1589–1599.

    Google Scholar 

  141. Gold JM, Raja A. Cisplatin (Cisplatinum). StatPearls [Internet]: StatPearls Publishing; 2019.

  142. You L, Chang D, Du H-Z, Zhao Y-P. Genome-wide screen identifies PVT1 as a regulator of Gemcitabine sensitivity in human pancreatic cancer cells. Biochem Biophys Res Commun. 2011;407:1–6.

    Article  CAS  PubMed  Google Scholar 

  143. Hu M, Zhang Q, Tian XH, Wang JL, et al. lncRNA CCAT1 is a biomarker for the proliferation and drug resistance of esophageal cancer via the miR-143/PLK1/BUBR1 axis. Mol Carcinogen. 2019;58:2207–2217.

    Article  CAS  Google Scholar 

  144. McCleland ML, Mesh K, Lorenzana E, Chopra VS, et al. CCAT1 is an enhancer-templated RNA that predicts BET sensitivity in colorectal cancer. J Clin Investig. 2016;126:639–652.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Yu J, Shen J, Qiao X, Cao L, et al. SNHG20/miR-140-5p/NDRG3 axis contributes to 5-fluorouracil resistance in gastric cancer. Oncol Lett. 2019;18:1337–1343.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhang N, Yin Y, Xu S-J, Chen W-S. 5-Fluorouracil: mechanisms of resistance and reversal strategies. Molecules. 2008;13:1551–1569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang W, Li Y, Li Y, Hong A, et al. NDRG3 is an androgen regulated and prostate enriched gene that promotes in vitro and in vivo prostate cancer cell growth. Int J Cancer. 2009;124:521–530.

    Article  CAS  PubMed  Google Scholar 

  148. Jing J-S, Li H, Wang S-C, Ma J-M, et al. NDRG3 overexpression is associated with a poor prognosis in patients with hepatocellular carcinoma. Biosci Rep. 2018;38:1–9.

    Google Scholar 

  149. Verstraelen J, Reichl S. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue. Mol Pharm. 2014;11:2160–2171.

    Article  CAS  PubMed  Google Scholar 

  150. Zhang X, Bo P, Liu L, Zhang X, Li J. Overexpression of long non-coding RNA GHET1 promotes the development of multidrug resistance in gastric cancer cells. Biomed Pharmacother. 2017;92:580–585.

    Article  CAS  PubMed  Google Scholar 

  151. Weaver BA. How Taxol/paclitaxel kills cancer cells. Mol Biol Cell. 2014;25:2677–2681.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Thorn CF, Oshiro C, Marsh S, Hernandez-Boussard T, et al. Doxorubicin pathways: pharmacodynamics and adverse effects. Pharmacogenet Genom. 2011;21:440.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Khalaj-Kondori.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 183 kb)

Supplementary material 2 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajehdehi, M., Khalaj-Kondori, M., Ghasemi, T. et al. Long Noncoding RNAs in Gastrointestinal Cancer: Tumor Suppression Versus Tumor Promotion. Dig Dis Sci 66, 381–397 (2021). https://doi.org/10.1007/s10620-020-06200-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-020-06200-x

Keywords

Navigation