Skip to main content
Log in

Anti-inflammatory Effects of Carbon Monoxide-Releasing Molecule on Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background and Aim

Recent findings indicate that carbon monoxide (CO) in non-toxic doses exerts a beneficial anti-inflammatory action in various experimental models. However, the precise anti-inflammatory mechanism of CO in the intestine remains unclear. Here, we assessed the effects of a novel water-soluble CO-releasing molecule, CORM-3, on trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice.

Methods

To induce colitis, C57BL/6 male mice received an enema of TNBS. CORM-3 or its inactive compound, iCORM-3, were administered intraperitoneally, once immediately before, and twice daily after receiving an enema of TNBS. Three days after TNBS administration, the distal colon was removed, assessed for colonic damage and histological scores, polymorphonuclear leukocyte recruitment (tissue-associated myeloperoxidase, MPO activity), and TNF-α, IFN-γ and IL-17A expression (mRNA and protein levels in the colon mucosa). CD4+ T cells isolated from murine spleens were stimulated with anti-CD3/CD28, in the presence or absence of CORM-3/iCORM-3. The cell supernatants were assessed for TNF-α and IFN-γ expression, 24 h following stimulation.

Results

Colonic damage and histological scores were significantly increased in TNBS-induced mice compared to sham-operated mice. Tissue-associated MPO activity and expression of TNF-α, IFN-γ, and IL-17A in the colonic mucosa were higher in TNBS-induced colitis mice. The above changes were attenuated in CORM-3-treated mice. Further, CORM-3 was effective in reducing TNF-α and IFN-γ production in anti-CD3/CD28-stimulated CD4+ T cells.

Conclusions

These findings indicate that CO released from CORM-3 ameliorates inflammatory responses in the colon of TNBS-challenged mice at least in part through a mechanism that involves the suppression of inflammatory cell recruitment/activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.

    Article  CAS  PubMed  Google Scholar 

  2. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554.

    Article  CAS  PubMed  Google Scholar 

  3. Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276:L688–L694.

    CAS  PubMed  Google Scholar 

  4. Kaizu T, Ikeda A, Nakao A, et al. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol. 2008;294:G236–G244.

    Article  CAS  PubMed  Google Scholar 

  5. Nakao A, Kimizuka K, Stolz DB, et al. Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol. 2003;163:1587–1598.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Nakao A, Toyokawa H, Abe M, et al. Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive T-cell responses. Transplantation. 2006;81:220–230.

    Article  PubMed  Google Scholar 

  7. Neto JS, Nakao A, Kimizuka K, et al. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287:F979–F989.

    Article  PubMed  Google Scholar 

  8. Takagi T, Naito Y, Inoue M, et al. Inhalation of carbon monoxide ameliorates collagen-induced arthritis in mice and regulates the articular expression of IL-1beta and mcp-1. Inflammation. 2009;32:83–88.

    Article  CAS  PubMed  Google Scholar 

  9. Tsui TY, Obed A, Siu YT, et al. Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock. 2007;27:165–171.

    Article  CAS  PubMed  Google Scholar 

  10. Hegazi RA, Rao KN, Mayle A, et al. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway. J Exp Med. 2005;202:1703–1713.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Zuckerbraun BS, Otterbein LE, Boyle P, et al. Carbon monoxide protects against the development of experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G607–G613.

    Article  CAS  PubMed  Google Scholar 

  12. Takagi T, Naito Y, Mizushima K, et al. Increased intestinal expression of heme oxygenase-1 and its localization in patients with ulcerative colitis. J Gastroenterol Hepatol. 2008;23:S229–S233.

    Article  CAS  PubMed  Google Scholar 

  13. Naito Y, Takagi T, Uchiyama K, et al. Heme oxygenase-1: a novel therapeutic target for gastrointestinal diseases. J Clin Biochem Nutr. 2011;48:126–133.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Takagi T, Naito Y, Mizushima K, et al. Inhalation of carbon monoxide ameliorates TNBS-induced colitis in mice through the inhibition of TNF-α expression. Dig Dis Sci. 2010;55:2797–2804.

    Article  CAS  PubMed  Google Scholar 

  15. Boyko EJ, Koepsell TD, Perera DR, et al. Risk of ulcerative colitis among former and current cigarette smokers. N Engl J Med. 1987;12:707–710.

    Article  Google Scholar 

  16. Jick H, Walker AM. Cigarette smoking and ulcerative colitis. N Engl J Med. 1983;308:261–263.

    Article  CAS  PubMed  Google Scholar 

  17. Motterlini R, Otterbein LE. The therapeutic potential of carbon monoxide. Nat Rev Drug Discov. 2010;9:728–743.

    Article  CAS  PubMed  Google Scholar 

  18. Guo Y, Stein AB, Wu WJ, et al. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol. 2004;286:H1649–H1653.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. De Backer O, Elinck E, Blanckaert B, et al. Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut. 2009;58:347–356.

    Article  PubMed  Google Scholar 

  20. Motterlini R, Clark JE, Foresti R, et al. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res. 2002;90:E17–E24.

    Article  CAS  PubMed  Google Scholar 

  21. Taillé C, El-Benna J, Lanone S, et al. Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem. 2005;280:25350–25360.

    Article  PubMed  Google Scholar 

  22. Clark JE, Naughton P, Shurey S, et al. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res. 2003;93:e2–e8.

    Article  CAS  PubMed  Google Scholar 

  23. Uchiyama K, Naito Y, Takagi T, et al. Carbon monoxide enhance colonic epithelial restitution via FGF15 derived from colonic myofibroblasts. Biochem Biophys Res Commun. 2010;391:1122–1126.

    Article  CAS  PubMed  Google Scholar 

  24. Cepinskas G, Katada K, Bihari A, et al. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol. 2008;294:G184–G191.

    Article  CAS  PubMed  Google Scholar 

  25. Higashimura Y, Naito Y, Takagi T, et al. Oligosaccharides from agar inhibit murine intestinal inflammation through the induction of heme oxygenase-1 expression. J Gastroenterol. 2013;48:897–909.

    Article  CAS  PubMed  Google Scholar 

  26. Harusato A, Naito Y, Takagi T, et al. BTB and CNC homolog 1 (Bach1) deficiency ameliorates TNBS colitis in mice: role of M2 macrophages and heme oxygenase-1. Inflamm Bowel Dis. 2013;19:740–753.

    Article  PubMed  Google Scholar 

  27. Mizuguchi S, Stephen J, Bihari R, et al. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am J Physiol Heart Circ Physiol. 2009;297:H920–H929.

    Article  CAS  PubMed  Google Scholar 

  28. Hervera A, Leánez S, Motterlini R, et al. Treatment with carbon monoxide-releasing molecules and an HO-1 inducer enhances the effects and expression of μ-opioid receptors during neuropathic pain. Anesthesiology. 2013;118:1180–1197.

    Article  CAS  PubMed  Google Scholar 

  29. Lancel S, Montaigne D, Marechal X, et al. Carbon monoxide improves cardiac function and mitochondrial population quality in a mouse model of metabolic syndrome. PLoS One. 2012;7:e41836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Tayem Y, Johnson TR, Mann BE, et al. Protection against cisplatin-induced nephrotoxicity by a carbon monoxide-releasing molecule. Am J Physiol Renal Physiol. 2006;290:F789–F794.

    Article  CAS  PubMed  Google Scholar 

  31. McCafferty DM, Miampamba M, Sihota E, et al. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut. 1999;45:864–873.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Sugimoto N, Rui T, Yang M, et al. Points of control exerted along the macrophage-endothelial cell-polymorphonuclear neutrophil axis by PECAM-1 in the innate immune response of acute colonic inflammation. J Immunol. 2008;181:2145–2154.

    Article  CAS  PubMed  Google Scholar 

  33. Elson CO, Beagley KW, Sharmanov AT, et al. Hapten-induced model of murine inflammatory bowel disease. J Immunol. 1996;157:2174–2185.

    CAS  PubMed  Google Scholar 

  34. Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol. 1986;251:G567–G574.

    CAS  PubMed  Google Scholar 

  35. Takagi T, Naito Y, Uchiyama K, et al. Carbon monoxide liberated from carbon monoxide-releasing molecule exerts an anti-inflammatory effect on dextran sulfate sodium-induced colitis in mice. Dig Dis Sci. 2011;56:1663–1671.

    Article  CAS  PubMed  Google Scholar 

  36. Sheikh SZ, Hegazi RA, Kobayashi T, et al. An anti-inflammatory role for carbon monoxide and heme oxygenase-1 in chronic Th2-mediated murine colitis. J Immunol. 2011;186:5506–5513.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lunney PC, Leong RW. Review article: ulcerative colitis, smoking and nicotine therapy. Aliment Pharmacol Ther. 2012;36:997–1008.

    Article  CAS  PubMed  Google Scholar 

  38. Motterilini R, Mann BE, Johnson TR, et al. Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des. 2003;9:2525–2539.

    Article  Google Scholar 

  39. Katada K, Bihari A, Mizuguchi S, et al. Carbon monoxide liberated from CO-releasing molecule (CORM-2) attenuates ischemia/reperfusion (I/R)-induced inflammation in the small intestine. Inflammation. 2010;33:92–100.

    Article  CAS  PubMed  Google Scholar 

  40. Bani-Hani MG, Greenstein D, Mann BE, et al. Modulation of thrombin-induced neuroinflammation in BV-2 microglia by carbon monoxide-releasing molecule 3. J Pharmacol Exp Ther. 2006;318:1315–1322.

    Article  CAS  PubMed  Google Scholar 

  41. Bagul A, Hosgood SA, Kaushik M, et al. Carbon monoxide protects against ischemia-reperfusion injury in an experimental model of controlled nonheartbeating donor kidney. Transplantation. 2008;27:576–581.

    Article  Google Scholar 

  42. Sener A, Tran KC, Deng JP, et al. Carbon monoxide releasing molecules inhibit cell death resulting from renal transplantation related stress. J Urol. 2013;190:772–778.

    Article  CAS  PubMed  Google Scholar 

  43. Naito Y, Takagi T, Yoshikawa T. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol. 2007;42:787–798.

    Article  CAS  PubMed  Google Scholar 

  44. Naito Y, Takagi T, Yoshikawa T. Neutrophil-dependent oxidative stress in ulcerative colitis. J Clin Biochem Nutr. 2007;41:18–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Naito Y, Uchiyama K, Takagi T, et al. Therapeutic potential of carbon monoxide (CO) for intestinal inflammation. Curr Med Chem. 2012;19:70–76.

    Article  CAS  PubMed  Google Scholar 

  46. Freitas A, Alves-Filho JC, Secco DD, et al. Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol. 2006;149:345–354.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Bergstraesser C, Hoeger S, Song H, et al. Inhibition of VCAM-1 expression in endothelial cells by CORM-3: the role of the ubiquitin-proteasome system, p38, and mitochondrial respiration. Free Radic Biol Med. 2012;52:794–802.

    Article  CAS  PubMed  Google Scholar 

  48. Megías J, Busserolles J, Alcaraz MJ. The carbon monoxide-releasing molecule CORM-2 inhibits the inflammatory response induced by cytokines in Caco-2 cells. Br J Pharmacol. 2007;150:977–986.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Lee SS, Gao W, Mazzola S, et al. Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. FASEB J. 2007;21:3450–3457.

    Article  CAS  PubMed  Google Scholar 

  50. Brusko TM, Wasserfall CH, Agarwal A, et al. An integral role for heme oxygenase-1 and carbon monoxide in maintain peripheral tolerance by CD4 + CD25 + regulatory T cells. J Immunol. 2005;174:5181–5186.

    Article  CAS  PubMed  Google Scholar 

  51. Onyiah JC, Sheikh SZ, Maharshak N, et al. Carbon monoxide and heme oxygenase-1 prevent intestinal inflammation in mice by promoting bacterial clearance. Gastroenterology. 2012;144:789–798.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (C) to Y.N. (No. 25460958) and (C) to T.T. (No. 25460959) from the Japan Society for the Promotion of Science, and by an Adaptable and Seamless Technology Transfer Program through target driven R&D to Y.N. from the Japan Science and Technology Agency. Dr. Koichiro Yasui evaluated the quality and integrity of the data.

Conflict of interest

Y.I. and N.Y. have an affiliation with a donation-funded department from AstraZeneca CO., Ltd., Eisai CO., Ltd., Otsuka Pharmaceutical Co., Ltd., MSD K.K., Dainippon Sumitomo Pharma Co., Ltd., Chugai Pharmaceutical Co., Ltd., FUJIFILM Medical Co., Ltd. and Merck Serono Co., Ltd. Y.N. received scholarship funds from Otsuka Pharmaceutical Co., Ltd. and Takeda Pharmaceutical Co., Ltd. Y.I. received scholarship funds from MSD K.K. and Bristol-Myers K.K. The other authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohisa Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuda, W., Takagi, T., Katada, K. et al. Anti-inflammatory Effects of Carbon Monoxide-Releasing Molecule on Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice. Dig Dis Sci 59, 1142–1151 (2014). https://doi.org/10.1007/s10620-013-3014-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-3014-1

Keywords

Navigation