Skip to main content

Advertisement

Log in

Carbon Monoxide Liberated from CO-Releasing Molecule (CORM-2) Attenuates Ischemia/Reperfusion (I/R)-Induced Inflammation in the Small Intestine

  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

CORM-released CO has been shown to be beneficial in resolution of acute inflammation. The acute phase of intestinal ischemia-reperfusion (I/R) injury is characterized by oxidative stress-related inflammation and leukocyte recruitment. In this study, we assessed the effects and potential mechanisms of CORM-2-released CO in modulation of inflammatory response in the small intestine following I/R-challenge. To this end mice (C57Bl/6) small intestine were challenged with ischemia by occluding superior mesenteric artery (SMA) for 45 min. CORM-2 (8 mg/kg; i.v.) was administered immediately before SMA occlusion. Sham operated mice were injected with vehicle (0.25% DMSO). Inflammatory response in the small intestine (jejunum) was assessed 4 h following reperfusion by measuring tissue levels of TNF-α protein (ELISA), adhesion molecules E-selectin and ICAM-1 (Western blot), NF-κB activation (EMSA), along with PMN tissue accumulation (MPO assay) and leukocyte rolling/adhesion in the microcirculation of jejunum (intravital microscopy). The obtained results indicate that tissue levels of TNF-α, E-selectin and ICAM-1 protein expression, activation of NF-κB, and subsequent accumulation of PMN were elevated in I/R-challenged jejunum. The above changes were significantly attenuated in CORM-2-treated mice. Taken together these findings indicate that CORM-2-released CO confers anti-inflammatory effects by interfering with NF-κB activation and subsequent up-regulation of vascular pro-adhesive phenotype in I/R-challenged small intestine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Haglund, U. 1994. Gut ischaemia. Gut 35: S73–S76.

    Article  CAS  PubMed  Google Scholar 

  2. Hernandez, L.A., M.B. Grisham, B. Twohig, K.E. Arfors, J.M. Harlan, and D.N. Granger. 1987. Role of neutrophils in ischemia-reperfusion-induced microvascular injury. Am J Physiol 253: H699–H703.

    CAS  PubMed  Google Scholar 

  3. Souza, D.G., A.T. Vieira, V. Pinho, L.P. Sousa, A.A. Andrade, C.A. Bonjardim, et al. 2005. NF-kappaB plays a major role during the systemic and local acute inflammatory response following intestinal reperfusion injury. Br J Pharmacol 145: 246–254.

    Article  CAS  PubMed  Google Scholar 

  4. Zou, L., B. Attuwaybi, and B.C. Kone. 2003. Effects of NF-kappa B inhibition on mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 284: G713–G721.

    CAS  PubMed  Google Scholar 

  5. Cepinskas, G., C.W. Lush, and P.R. Kvietys. 1999. Anoxia/reoxygenation-induced tolerance with respect to polymorphonuclear leukocyte adhesion to cultured endothelial cells. A nuclear factor-kappaB-mediated phenomenon. Circ Res 84: 103–112.

    CAS  PubMed  Google Scholar 

  6. Kubes, P., J. Hunter, and D.N. Granger. 1992. Ischemia/reperfusion-induced feline intestinal dysfunction: importance of granulocyte recruitment. Gastroenterology 103: 807–812.

    CAS  PubMed  Google Scholar 

  7. Panes, J., M. Perry, and D.N. Granger. 1999. Leukocyte-endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 126: 537–550.

    Article  CAS  PubMed  Google Scholar 

  8. Colvin, B.L. and A.W. Thomson. 2002. Chemokines, their receptors, and transplant outcome. Transplantation 74: 149–155.

    Article  CAS  PubMed  Google Scholar 

  9. Grisham, M.B., L.A. Hernandez, and D.N. Granger. 1986. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol 251: G567–G574.

    CAS  PubMed  Google Scholar 

  10. Amersi, F., X.D. Shen, D. Anselmo, J. Melinek, S. Iyer, D.J. Southard, et al. 2002. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 35: 815–823.

    Article  CAS  PubMed  Google Scholar 

  11. Nakao, A., K. Kimizuka, D.B. Stolz, J.S. Neto, T. Kaizu, A.M. Choi, et al. 2003. Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol 163: 1587–1598.

    CAS  PubMed  Google Scholar 

  12. Nakao, A., A.M. Choi, and N. Murase. 2006. Protective effect of carbon monoxide in transplantation. J Cell Mol Med 10: 650–671.

    Article  CAS  PubMed  Google Scholar 

  13. Mann BE, Motterlini R. 2007. CO and NO in medicine. Chem Commun (Camb) 4197–208.

  14. Ott, M.C., J.R. Scott, A. Bihari, A. Badhwar, L.E. Otterbein, D.K. Gray, et al. 2005. Inhalation of carbon monoxide prevents liver injury and inflammation following hind limb ischemia/reperfusion. Faseb J 19: 106–108.

    CAS  PubMed  Google Scholar 

  15. Kaizu, T., A. Ikeda, A. Nakao, A. Tsung, H. Toyokawa, S. Ueki, et al. 2008. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via MEK/ERK1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol 294: G236–G244.

    Article  CAS  PubMed  Google Scholar 

  16. Kohmoto, J., A. Nakao, D.B. Stolz, T. Kaizu, A. Tsung, A. Ikeda, et al. 2007. Carbon monoxide protects rat lung transplants from ischemia-reperfusion injury via a mechanism involving p38 MAPK pathway. Am J Transplant 7: 2279–2290.

    Article  CAS  PubMed  Google Scholar 

  17. Mayr, F.B., A. Spiel, J. Leitner, C. Marsik, P. Germann, R. Ullrich, et al. 2005. Effects of carbon monoxide inhalation during experimental endotoxemia in humans. Am J Respir Crit Care Med 171: 354–360.

    Article  PubMed  Google Scholar 

  18. Guo, Y., A.B. Stein, W.J. Wu, W. Tan, X. Zhu, Q.H. Li, et al. 2004. Administration of a CO-releasing molecule at the time of reperfusion reduces infarct size in vivo. Am J Physiol Heart Circ Physiol 286: H1649–H1653.

    Article  CAS  PubMed  Google Scholar 

  19. Motterlini, R., J.E. Clark, R. Foresti, P. Sarathchandra, B.E. Mann, and C.J. Green. 2002. Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90: E17–E24.

    Article  CAS  PubMed  Google Scholar 

  20. Motterlini, R., B.E. Mann, T.R. Johnson, J.E. Clark, R. Foresti, and C.J. Green. 2003. Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Curr Pharm Des 9: 2525–2539.

    Article  CAS  PubMed  Google Scholar 

  21. Foresti, R., J. Hammad, J.E. Clark, T.R. Johnson, B.E. Mann, A. Friebe, et al. 2004. Vasoactive properties of CORM-3, a novel water-soluble carbon monoxide-releasing molecule. Br J Pharmacol 142: 453–460.

    Article  CAS  PubMed  Google Scholar 

  22. Clark, J.E., P. Naughton, S. Shurey, C.J. Green, T.R. Johnson, B.E. Mann, et al. 2003. Cardioprotective actions by a water-soluble carbon monoxide-releasing molecule. Circ Res 93: e2–e8.

    Article  CAS  PubMed  Google Scholar 

  23. Cepinskas, G., K. Katada, A. Bihari, and R.F. Potter. 2008. Carbon monoxide liberated from carbon monoxide-releasing molecule CORM-2 attenuates inflammation in the liver of septic mice. Am J Physiol Gastrointest Liver Physiol 294: G184–G191.

    Article  CAS  PubMed  Google Scholar 

  24. Sun, B.W., Q. Jin, Y. Sun, Z.W. Sun, X. Chen, Z.Y. Chen, et al. 2007. Carbon liberated from CO-releasing molecules attenuates leukocyte infiltration in the small intestine of thermally injured mice. World J Gastroenterol 13: 6183–6190.

    Article  CAS  PubMed  Google Scholar 

  25. Sawle, P., R. Foresti, B.E. Mann, T.R. Johnson, C.J. Green, and R. Motterlini. 2005. Carbon monoxide-releasing molecules (CO-RMs) attenuate the inflammatory response elicited by lipopolysaccharide in RAW264.7 murine macrophages. Br J Pharmacol 145: 800–810.

    Article  CAS  PubMed  Google Scholar 

  26. Urquhart, P., G. Rosignoli, D. Cooper, R. Motterlini, and M. Perretti. 2007. Carbon monoxide-releasing molecules modulate leukocyte-endothelial interactions under flow. J Pharmacol Exp Ther 321: 656–662.

    Article  CAS  PubMed  Google Scholar 

  27. Katada, K., A. Bihari, A. Badhwar, N. Yoshida, T. Yoshikawa, R.F. Potter, et al. 2009. Hindlimb ischemia/reperfusion-induced remote injury to the small intestine: role of inducible nitric-oxide synthase-derived nitric oxide. J Pharmacol Exp Ther 329: 919–927.

    Article  CAS  PubMed  Google Scholar 

  28. Lush, C.W., G. Cepinskas, and P.R. Kvietys. 2003. Regulation of intestinal nuclear factor-kappaB activity and E-selectin expression during sepsis: a role for peroxynitrite. Gastroenterology 124: 118–128.

    Article  CAS  PubMed  Google Scholar 

  29. Cepinskas, G., J. Savickiene, C.V. Ionescu, and P.R. Kvietys. 2003. PMN transendothelial migration decreases nuclear NFkappaB in IL-1beta-activated endothelial cells: role of PECAM-1. J Cell Biol 161: 641–651.

    Article  CAS  PubMed  Google Scholar 

  30. Liu, S.F. and A.B. Malik. 2006. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol 290: L622–L645.

    Article  CAS  PubMed  Google Scholar 

  31. Janssen-Heininger, Y.M., M.E. Poynter, and P.A. Baeuerle. 2000. Recent advances towards understanding redox mechanisms in the activation of nuclear factor kappaB. Free Radic Biol Med 28: 1317–1327.

    Article  CAS  PubMed  Google Scholar 

  32. Zabalgoitia, M., J.T. Colston, S.V. Reddy, J.W. Holt, R.F. Regan, D.E. Stec, et al. 2008. Carbon monoxide donors or heme oxygenase-1 (HO-1) overexpression blocks interleukin-18-mediated NF-kappaB-PTEN-dependent human cardiac endothelial cell death. Free Radic Biol Med 44: 284–298.

    Article  CAS  PubMed  Google Scholar 

  33. Fujita, T., K. Toda, A. Karimova, S.F. Yan, Y. Naka, S.F. Yet, et al. 2001. Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 7: 598–604.

    Article  CAS  PubMed  Google Scholar 

  34. Motterlini, R. 2007. Carbon monoxide-releasing molecules (CO-RMs): vasodilatory, anti-ischaemic and anti-inflammatory activities. Biochem Soc Trans 35: 1142–1146.

    Article  CAS  PubMed  Google Scholar 

  35. Motterlini, R., P. Sawle, J. Hammad, S. Bains, R. Alberto, R. Foresti, et al. 2005. CORM-A1: a new pharmacologically active carbon monoxide-releasing molecule. Faseb J 19: 284–286.

    CAS  PubMed  Google Scholar 

  36. De Backer, O., E. Elinck, B. Blanckaert, L. Leybaert, R. Motterlini, and R.A. Lefebvre. 2009. Water-soluble CO-releasing molecules reduce the development of postoperative ileus via modulation of MAPK/HO-1 signalling and reduction of oxidative stress. Gut 58: 347–356.

    Article  PubMed  Google Scholar 

  37. Sandouka, A., B.J. Fuller, B.E. Mann, C.J. Green, R. Foresti, and R. Motterlini. 2006. Treatment with CO-RMs during cold storage improves renal function at reperfusion. Kidney Int 69: 239–247.

    Article  CAS  PubMed  Google Scholar 

  38. Chung, S.W., X. Liu, A.A. Macias, R.M. Baron, and M.A. Perrella. 2008. Heme oxygenase-1-derived carbon monoxide enhances the host defense response to microbial sepsis in mice. J Clin Invest 118: 239–247.

    Article  CAS  PubMed  Google Scholar 

  39. Srisook, K., S.S. Han, H.S. Choi, M.H. Li, H. Ueda, C. Kim, et al. 2006. CO from enhanced HO activity or from CORM-2 inhibits both O2- and NO production and downregulates HO-1 expression in LPS-stimulated macrophages. Biochem Pharmacol 71: 307–318.

    Article  CAS  PubMed  Google Scholar 

  40. Mizuguchi, S., J. Stephen, R. Bihari, N. Markovic, S. Suehiro, A. Capretta, et al. 2009. CORM-3-derived CO modulates polymorphonuclear leukocyte migration across the vascular endothelium by reducing levels of cell surface-bound elastase. Am J Physiol Heart Circ Physiol 297: H920–H929.

    Article  CAS  PubMed  Google Scholar 

  41. Morse, D., S.E. Pischke, Z. Zhou, R.J. Davis, R.A. Flavell, T. Loop, et al. 2003. Suppression of inflammatory cytokine production by carbon monoxide involves the JNK pathway and AP-1. J Biol Chem 278: 36993–36998.

    Article  CAS  PubMed  Google Scholar 

  42. Cepinskas, G. and J.X. Wilson. 2008. Inflammatory response in microvascular endothelium in sepsis: role of oxidants. J Clin Biochem Nutr 42: 175–184.

    Article  CAS  PubMed  Google Scholar 

  43. Ley, K., C. Laudanna, M.I. Cybulsky, and S. Nourshargh. 2007. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: 678–689.

    Article  CAS  PubMed  Google Scholar 

  44. Massberg, S. and K. Messmer. 1998. The nature of ischemia/reperfusion injury. Transplant Proc 30: 4217–4223.

    Article  CAS  PubMed  Google Scholar 

  45. Ley K, Reutershan J. 2006. Leucocyte-endothelial interactions in health and disease. Handb Exp Pharmacol 97–133.

  46. Kubes, P. 1999. The role of adhesion molecules and nitric oxide in intestinal and hepatic ischemia/reperfusion. Hepatogastroenterology. 46(Suppl 2): 1458–1463.

    CAS  PubMed  Google Scholar 

  47. Russell, J., C.J. Epstein, M.B. Grisham, J.S. Alexander, K.Y. Yeh, and D.N. Granger. 2000. Regulation of E-selectin expression in postischemic intestinal microvasculature. Am J Physiol Gastrointest Liver Physiol 278: G878–G885.

    CAS  PubMed  Google Scholar 

  48. Freitas, A., J.C. Alves-Filho, D.D. Secco, A.F. Neto, S.H. Ferreira, C. Barja-Fidalgo, et al. 2006. Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol 149: 345–354.

    Article  CAS  PubMed  Google Scholar 

  49. Baldwin Jr., A.S. 1996. The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649–683.

    Article  CAS  PubMed  Google Scholar 

  50. Bonizzi, G., J. Piette, M.P. Merville, and V. Bours. 2000. Cell type-specific role for reactive oxygen species in nuclear factor-kappaB activation by interleukin-1. Biochem Pharmacol 59: 7–11.

    Article  CAS  PubMed  Google Scholar 

  51. Chang, C.K., M.V. Albarillo, and W. Schumer. 2001. Therapeutic effect of dimethyl sulfoxide on ICAM-1 gene expression and activation of NF-kappaB and AP-1 in septic rats. J Surg Res 95: 181–187.

    Article  CAS  PubMed  Google Scholar 

  52. Blackwell, T.S., F.E. Yull, C.L. Chen, A. Venkatakrishnan, T.R. Blackwell, D.J. Hicks, et al. 2000. Multiorgan nuclear factor kappa B activation in a transgenic mouse model of systemic inflammation. Am J Respir Crit Care Med 162: 1095–1101.

    CAS  PubMed  Google Scholar 

  53. Barnes, P.J. and M. Karin. 1997. Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336: 1066–1071.

    Article  CAS  PubMed  Google Scholar 

  54. Kaizu, T., A. Nakao, A. Tsung, H. Toyokawa, R. Sahai, D.A. Geller, et al. 2005. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery 138: 229–235.

    Article  PubMed  Google Scholar 

  55. Megias, J., J. Busserolles, and M.J. Alcaraz. 2007. The carbon monoxide-releasing molecule CORM-2 inhibits the inflammatory response induced by cytokines in Caco-2 cells. Br J Pharmacol 150: 977–986.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the research grants from the Heart and Stroke Foundation of Ontario; HSFO-NA6171 and Lawson Health Research Institute Internal Research Fund; IRF -025-09 (G. Cepinskas) and Canadian Institutes for Health Research; MOP-68848 (R. F. Potter). Dr. Shinjiro Mizuguchi (co-author) is a recipient of the Government of Canada Post-Doctoral Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gediminas Cepinskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katada, K., Bihari, A., Mizuguchi, S. et al. Carbon Monoxide Liberated from CO-Releasing Molecule (CORM-2) Attenuates Ischemia/Reperfusion (I/R)-Induced Inflammation in the Small Intestine. Inflammation 33, 92–100 (2010). https://doi.org/10.1007/s10753-009-9162-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-009-9162-y

Key Words

Navigation