Skip to main content

Advertisement

Log in

Saturated Free Fatty Acid Sodium Palmitate-Induced Lipoapoptosis by Targeting Glycogen Synthase Kinase-3β Activation in Human Liver Cells

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Elevated serum saturated fatty acid levels and hepatocyte lipoapoptosis are features of nonalcoholic fatty liver disease (NAFLD).

Aim

The purpose of this study was to investigate saturated fatty acid induction of lipoapoptosis in human liver cells and the underlying mechanisms.

Methods

Human liver L02 and HepG2 cells were treated with sodium palmitate, a saturated fatty acid, for up to 48 h with or without lithium chloride, a glycogen synthase kinase-3β (GSK-3β) inhibitor, or GSK-3β shRNA transfection. Transmission electron microscopy was used to detect morphological changes, flow cytometry was used to detect apoptosis, a colorimetric assay was used to detect caspase-3 activity, and western blot analysis was used to detect protein expression.

Results

The data showed that sodium palmitate was able to induce lipoapoptosis in L02 and HepG2 cells. Western blot analysis showed that sodium palmitate activated GSK-3β protein, which was indicated by dephosphorylation of GSK-3β at Ser-9. However, inhibition of GSK-3β activity with lithium chloride treatment or knockdown of GSK-3β expression with shRNA suppressed sodium palmitate-induced lipoapoptosis in L02 and HepG2 cells. On a molecular level, inhibition of GSK-3β expression or activity suppressed sodium palmitate-induced c-Jun-N-terminal kinase (JNK) phosphorylation and Bax upregulation, whereas GSK-3β inhibition did not affect endoplasmic reticulum stress-induced activation of unfolded protein response.

Conclusions

The present data demonstrated that saturated fatty acid sodium palmitate-induced lipoapoptosis in human liver L02 and HepG2 cells was regulated by GSK-3β activation, which led to JNK activation and Bax upregulation. This finding indicates that GSK-3β inhibition may be a potential therapeutic target to control NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NAFLD:

Nonalcoholic fatty liver disease

NASH:

Nonalcoholic steatohepatitis

FFA:

Free fatty acid

ER:

Endoplasmic reticulum

UPR:

Unfolded protein response

PERK:

Protein kinase RNA-like ER kinase

IRE1:

Inositol-requiring protein 1

GRP78:

Glucose-regulated protein 78

GSK-3:

Glycogen synthase kinase-3

JNK:

c-Jun-N-terminal kinase

Bax:

Bcl-2-associated X protein

BSA:

Bovine serum albumin

7-AAD:

7-amino actinomycin D

ATF6:

Activating transcription factor 6

ATF4:

Activating transcription factor 4

CHOP:

C/EBP-homologous protein

XBP-1:

X-box-binding protein 1

shRNA:

Short hairpin RNA

PI3K:

Phosphatidylinositide-3-OH kinase

References

  1. Parekh S, Anania FA. Abnormal lipid and glucose metabolism in obesity: implications for nonalcoholic fatty liver disease. Gastroenterology. 2007;132:2191–2207.

    Article  CAS  PubMed  Google Scholar 

  2. Targher G, Marra F, Marchesini G. Increased risk of cardiovascular disease in nonalcoholic fatty liver disease: causal effect or epiphenomenon? Diabetologia. 2008;51:1947–1953.

    Article  CAS  PubMed  Google Scholar 

  3. Adams LA, Lymp JF. St Sauver J, et al. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology. 2005;129:113–121.

    Article  PubMed  Google Scholar 

  4. Angulo P. Nonalcoholic fatty liver disease. N Engl J Med. 2002;346:1221–1231.

    Article  CAS  PubMed  Google Scholar 

  5. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. Clin Invest. 2005;115:1343–1351.

    Article  CAS  Google Scholar 

  6. Diraison F, Moulin P, Beylot M. Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 2003;29:478–485.

    Article  CAS  PubMed  Google Scholar 

  7. Kusminski CM, Shetty S, Orcil L, Unger RH, Scherer PE. Diabetes and apoptosis: lipotoxicity. Apoptosis. 2009;14:1484–1495.

    Article  CAS  PubMed  Google Scholar 

  8. Unger RH, Orci L. Lipoapoptosis: its mechanism and its diseases. Biochim Biophys Acta. 2002;1585:202–212.

    Article  CAS  PubMed  Google Scholar 

  9. Wei Y, Wang D, Pagliassotti MJ. Saturated fatty acid mediated endoplasmic reticulum stress and apoptosis are augmented by trans-10, cis-12-conjugated linoleic acid in liver cells. Mol Cell Biochem. 2007;3031:105–113.

    Article  Google Scholar 

  10. Pfaffenbach KT, Gentile CL, Nivala AM, Wang D, Wei Y, Pagliassotti MJ. Linking endoplasmic reticulum stress to cell death in hepatocytes: roles of C/EBP homologous protein and chemical chaperones in palmitate-mediated cell death. Am J Physiol Endocrinol Metab. 2010;298:E1027–E1035.

    Article  CAS  PubMed  Google Scholar 

  11. Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006;147:943–951.

    Article  CAS  PubMed  Google Scholar 

  12. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–529.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng J, Kaplowitz N. ER stress: can the liver cope? Hepatol. 2006;45:321–333.

    Article  CAS  Google Scholar 

  14. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13:184–190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Kaplowitz N, Than TA, Shinohara M, Ji C. Endoplasmic reticulum stress and liver injury. Semin Liver Dis. 2007;27:367–377.

    Article  CAS  PubMed  Google Scholar 

  16. Puri P, Mirshahi P, Cheung P, et al. Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology. 2008;134:568–576.

    Article  CAS  PubMed  Google Scholar 

  17. Cao J, Dai DL, Yao L, et al. Saturated fatty acid induction of endoplasmic reticulum stress and apoptosis in human liver cells via the PERK/ATF4/CHOP signaling pathway. Mol Cell Biochem. 2012;364:115–129.

    Article  CAS  PubMed  Google Scholar 

  18. Eldar-Finkelman H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol Med. 2002;8:126–132.

    Article  CAS  PubMed  Google Scholar 

  19. Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK-3): inflammation, diseases, and therapeutics. Neurochem Res. 2007;32:577–595.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wojtaszewski JF, Nielsen P, Kiens B, Richter EA. Regulation of glycogen synthase kinase-3 in human skeletal muscle: effects of food intake and bicycle exercise. Diabetes. 2001;50:265–269.

    Article  CAS  PubMed  Google Scholar 

  21. Markuns JF, Wojtaszewski JF, Goodyear LJ. Insulin and exercise decrease glycogen synthase kinase-3 activity by different mechanisms in rat skeletal muscle. J Biol Chem. 1999;274:24896–24900.

    Article  CAS  PubMed  Google Scholar 

  22. Pap M, Cooper GM. Role of glycogen synthase kinase-3 in the phosphatidylinositon 3-kinase/Akt cell survival pathway. J Biol Chem. 1998;273:19929–19932.

    Article  CAS  PubMed  Google Scholar 

  23. Takadera T, Fujibayashi M, Kaniyu H, Sakota N, Ohyashiki T. Caspase-dependent apoptosis induced by thapsigargin was prevented by glycogen synthase kinase-3 inhibitors in cultured rat cortical neurons. Neurochem Res. 2007;32:1336–1342.

    Article  CAS  PubMed  Google Scholar 

  24. Linseman DA, Butts BD, Precht TA, et al. Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci. 2004;24:9993–10002.

    Article  CAS  PubMed  Google Scholar 

  25. Shinohara M, Ybanez MD, Win S, et al. Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem. 2010;285:8244–8255.

    Article  CAS  PubMed  Google Scholar 

  26. Nehra V, Angulo P, Buchman AL, Lindor KD. Nutritional and metabolic considerations in the etiology of nonalcoholic steatohepatitis. Dig Dis Sci. 2001;46:2347–2352.

    Article  CAS  PubMed  Google Scholar 

  27. Mu YM, Yanase TH, Nishi YH, et al. Saturated FFAs, palmitic acid and steaeic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142:3590–3597.

    Article  CAS  PubMed  Google Scholar 

  28. Lu AH, Mu YM, Li BA, et al. Saturated free fatty acids, palmitic acid and stearic acid, induce apoptosis by stimulation of ceramide generation in rat testicular Leydig cell. Biochem Biophys Res Commun. 2003;303:1002–1007.

    Article  CAS  PubMed  Google Scholar 

  29. Ji J, Zhang L, Wang P, et al. Saturated free fatty acid, palmitic acid, induces apoptosis in fetal hepatocytes in culture. Exp Toxicol Pathol. 2005;56:369–376.

    Article  CAS  PubMed  Google Scholar 

  30. Li Q, Liu Z, Guo J, et al. Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response. Int J Mol Med. 2009;24:459–464.

    Article  CAS  PubMed  Google Scholar 

  31. Yu HH, Wu JF, Yang M, et al. Involvement of liver X receptor alpha in histone modifications across the target fatty acid synthase gene. Lipids. 2012;47:249–257.

    Article  CAS  PubMed  Google Scholar 

  32. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–480.

    Article  CAS  PubMed  Google Scholar 

  33. Yun SI, Yoon HY, Chung YS. Glycogen synthase kinase-3β regulates etoposide-induced apoptosis via Bcl-2 mediated caspase-3 activation in C3H10T1/2 cells. Apoptosis. 2009;14:771–777.

    Article  CAS  PubMed  Google Scholar 

  34. Kim AJ, Shi Y, Austin RC, Werstuck GH. Valproate protects cells from ER stress-induced lipid accumulation and apoptosis by inhibiting glycogen synthase kinase-3. J Cell Sci. 2005;118:89–99.

    Article  CAS  PubMed  Google Scholar 

  35. Huang WC, Lin YS, Chen CL, Wang CY, Chiu WH, Lin CF. Glycogen synthase kinase-3β mediates endoplasmic reticulum stress-induced lysosomal apoptosis in leukemia. J Pharmacolm Exp Ther. 2009;329:524–531.

    Article  CAS  Google Scholar 

  36. Johnson GL, Nakamura K. The c-jun kinase/stress-activated pathway: regulation, function and role in human disease. Biochim Biophys Acta. 2007;1773:1341–1348.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420:333–336.

    Article  CAS  PubMed  Google Scholar 

  38. Schattenberg JM, Singh R, Wang Y, et al. JNK1 but not JNK2 promotes the development of steatohepatitis in mice. Hepatology. 2006;43:163–172.

    Article  CAS  PubMed  Google Scholar 

  39. Singh R, Wang Y, Xiang Y, Tanaka KE, Gaarde WA, Czaja MJ. Differential effects of JNK1 and JNK2 inhibition on murine steatohepatitis and insulin resistance. Hepatology. 2009;49:87–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Cazanave SC, Mott JL, Elmi NA, et al. JNK1-dependent PUMA expression contributes to hepatocyte lipoapoptosis. J Biol Chem. 2009;284:26591–26602.

    Article  CAS  PubMed  Google Scholar 

  41. Malhi H, Bronk SF, Werneburg NW, Gores GJ. Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 2006;281:12093–12101.

    Article  CAS  PubMed  Google Scholar 

  42. Mishra R, Barthwal MK, Sondarva G, et al. Glycogen synthase kinase-3beta induces neuronal cell death via direct phosphorylation of mixed lineage kinase 3. J Biol Chem. 2007;282:30393–30405.

    Article  CAS  PubMed  Google Scholar 

  43. Kim JW, Lee JE, Kim MJ, Cho EG, Cho SG, Choi EJ. Glycogen synthase kinase 3 beta is a natural activator of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase kinase 1 (MEKK1). J Biol Chem. 2003;278:13995–14001.

    Article  CAS  PubMed  Google Scholar 

  44. Kim BJ, Ryu SW, Song BJ. JNK- and p38 kinase-mediated phosphorylation of Bax leads to its activation and mitochondrial translocation and to apoptosis of human hepatoma HepG2 cells. J Biol Chem. 2006;281:21256–21265.

    Article  CAS  PubMed  Google Scholar 

  45. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008;27:5621–6245.

    Google Scholar 

  46. Malhi H, Gores GJ. Cellular and molecular mechanisms of liver injury. Gastroenterology. 2008;134:1641–1654.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Song L, De Sarno P, Jope RS. Central role of glycogen synthase kinase-3β in endoplasmic reticulum stress-induced caspase-3 activation. Biol Chem. 2002;277:44701–44708.

    Article  CAS  Google Scholar 

  48. Hiroi T, Wei H, Hough C, Leeds P, Chuang DM. Protracted lithium treatment protects against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, GRP78 and Bcl-2. Phamacogenomics. 2005;5:102–111.

    Article  CAS  Google Scholar 

  49. Meares GP, Mines MA, Beulel E, et al. Glycogen synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in neuronal cells. Exp Cell Res. 2011;317:1621–1628.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hosoia T, Hyoda K, Okuma Y, Nomura Y, Ozawa K. Akt up- and down-regulation in response to endoplasmic reticulum stress. Brain Res. 2007;1152:27–31.

    Article  Google Scholar 

Download references

Acknowledgments

We sincerely thank the staff of the Department of Gastroenterology and Hepatology at the Second Affiliated Hospital of Chongqing Medical University for their constant and unselfish help. We thank Ms. Yingxia Xiang and Mr. Jing Wang for their consistent and illuminating technical assistance. We also thank Medjaden Bioscience, Hong Kong, China for assistance in preparation of this manuscript. This study was supported in part by grants from the Natural Science Foundation of China (#81270494 and #30871160) and the Project of Medical Science and Technology of Chongqing (#2012-1-033).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, J., Feng, XX., Yao, L. et al. Saturated Free Fatty Acid Sodium Palmitate-Induced Lipoapoptosis by Targeting Glycogen Synthase Kinase-3β Activation in Human Liver Cells. Dig Dis Sci 59, 346–357 (2014). https://doi.org/10.1007/s10620-013-2896-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-013-2896-2

Keywords

Navigation