Skip to main content

Advertisement

Log in

Inhalation of Carbon Monoxide Ameliorates TNBS-Induced Colitis in Mice Through the Inhibition of TNF-α Expression

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Carbon monoxide (CO), long considered a toxic gas, has recently been shown to mediate anti-inflammatory effects in various animal models. The aim of this study was to investigate whether the inhalation of CO ameliorated 2,4,6-trinitrobenzine sulfonic acid (TNBS)-induced colitis in mice.

Methods

The CO treatment group was exposed to CO gas at a concentration of 200 ppm in a closed cage starting on the day when TNBS was administered and throughout the remaining study period. The distal colon was removed, and ulcerative lesions were subsequently evaluated with macroscopic damage scores. Furthermore, thiobarbituric acid (TBA)-reactive substances and tissue-associated myeloperoxidase (MPO) activity in colonic mucosa were measured as indices of lipid peroxidation and neutrophil infiltration. The expressions of TNF-α in colonic mucosa were also measured by enzyme-linked immunosorbent assay. In additional experiments in vitro, CD4+ T cells isolated from the spleen were stimulated with anti-CD3/CD28 Ab, and the cells and supernatants were collected and evaluated for TNF-α expression.

Results

The increased colonic damage after TNBS administration was significantly inhibited by the treatment with CO. Furthermore, CO significantly inhibited the increases in TBA-reactive substances, MPO activity and TNF-α production in colonic mucosa after the induction of TNBS colitis. In CD4+ T cells isolated from mice treated with CO inhalation, the production of TNF-α was significantly inhibited.

Conclusions

The inhalation of CO protected mice from developing intestinal inflammation. Based on these data, the beneficial effects of CO in a murine colitis model may be attributed to its anti-inflammatory properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cobrin GM, Abreu MT. Defects in mucosal immunity leading to Crohn’s disease. Immunol Rev. 2005;206:277–295.

    Article  CAS  PubMed  Google Scholar 

  2. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.

    Article  CAS  PubMed  Google Scholar 

  3. Rutgeerts P, Vermeire S, Van Assche G. Biological therapies for inflammatory bowel diseases. Gastroenterology. 2009;136:1182–1197.

    Article  CAS  PubMed  Google Scholar 

  4. Baumgart DC, Sandborn WJ. Inflammatory bowel disease: clinical aspects and established and evolving therapies. Lancet. 2007;369:1641–1657.

    Article  CAS  PubMed  Google Scholar 

  5. Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554.

    Article  CAS  PubMed  Google Scholar 

  6. Naito Y, Takagi T, Yoshikawa T. Heme oxygenase-1: a new therapeutic target for inflammatory bowel disease. Aliment Pharmacol Ther. 2004;20(Suppl 1):177–184.

    Article  CAS  PubMed  Google Scholar 

  7. Sassa S. Biological implications of heme metabolism. J Clin Biochem Nutr. 2006;38:138–155.

    Article  CAS  Google Scholar 

  8. Alcaraz MJ, Fernandez P, Guillen MI. Anti-inflammatory actions of the heme oxygenase-1 pathway. Curr Pharm Des. 2003;9:2541–2551.

    Article  CAS  PubMed  Google Scholar 

  9. Lee TS, Chau LY. Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med. 2002;8:240–246.

    Article  CAS  PubMed  Google Scholar 

  10. Morse D, Choi AM. Heme oxygenase-1: from bench to bedside. Am J Respir Crit Care Med. 2005;172:660–670.

    Article  PubMed  Google Scholar 

  11. Nakao A, Kaczorowski DJ, Sugimoto R, Billiar TR, McCurry KR. Application of heme oxygenase-1, carbon monoxide and biliverdin for the prevention of intestinal ischemia/reperfusion injury. J Clin Biochem Nutr. 2008;42:78–88.

    Article  CAS  PubMed  Google Scholar 

  12. Takagi T, Naito Y, Mizushima K, et al. Increased intestinal expression of heme oxygenase-1 and its localization in patients with ulcerative colitis. J Gastroenterol Hepatol. 2008;23(Suppl 2):S229–S233.

    Article  CAS  PubMed  Google Scholar 

  13. Paul G, Bataille F, Obermeier F, et al. Analysis of intestinal haem-oxygenase-1 (ho-1) in clinical and experimental colitis. Clin Exp Immunol. 2005;140:547–555.

    Article  CAS  PubMed  Google Scholar 

  14. Wang WP, Guo X, Koo MW, et al. Protective role of heme oxygenase-1 on trinitrobenzene sulfonic acid-induced colitis in rats. Am J Physiol Gastrointest Liver Physiol. 2001;281:G586–G594.

    CAS  PubMed  Google Scholar 

  15. Otterbein LE, Mantell LL, Choi AM. Carbon monoxide provides protection against hyperoxic lung injury. Am J Physiol. 1999;276:L688–L694.

    CAS  PubMed  Google Scholar 

  16. Kaizu T, Nakao A, Tsung A, et al. Carbon monoxide inhalation ameliorates cold ischemia/reperfusion injury after rat liver transplantation. Surgery. 2005;138:229–235.

    Article  PubMed  Google Scholar 

  17. Nakao A, Kimizuka K, Stolz DB, et al. Carbon monoxide inhalation protects rat intestinal grafts from ischemia/reperfusion injury. Am J Pathol. 2003;163:1587–1598.

    CAS  PubMed  Google Scholar 

  18. Nakao A, Toyokawa H, Abe M, et al. Heart allograft protection with low-dose carbon monoxide inhalation: effects on inflammatory mediators and alloreactive t-cell responses. Transplantation. 2006;81:220–230.

    Article  PubMed  Google Scholar 

  19. Neto JS, Nakao A, Kimizuka K, et al. Protection of transplant-induced renal ischemia-reperfusion injury with carbon monoxide. Am J Physiol Renal Physiol. 2004;287:F979–F989.

    Article  PubMed  Google Scholar 

  20. Takagi T, Naito Y, Inoue M, et al. Inhalation of carbon monoxide ameliorates collagen-induced arthritis in mice and regulates the articular expression of il-1beta and mcp-1. Inflammation. 2009;32:83–88.

    Article  CAS  PubMed  Google Scholar 

  21. Tsui TY, Obed A, Siu YT, et al. Carbon monoxide inhalation rescues mice from fulminant hepatitis through improving hepatic energy metabolism. Shock. 2007;27:165–171.

    Article  CAS  PubMed  Google Scholar 

  22. Hegazi RA, Rao KN, Mayle A, Sepulveda AR, Otterbein LE, Plevy SE. Carbon monoxide ameliorates chronic murine colitis through a heme oxygenase 1-dependent pathway. J Exp Med. 2005;202:1703–1713.

    Article  CAS  PubMed  Google Scholar 

  23. Zuckerbraun BS, Otterbein LE, Boyle P, et al. Carbon monoxide protects against the development of experimental necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol. 2005;289:G607–G613.

    Article  CAS  PubMed  Google Scholar 

  24. Kaizu T, Ikeda A, Nakao A, et al. Protection of transplant-induced hepatic ischemia/reperfusion injury with carbon monoxide via mek/erk1/2 pathway downregulation. Am J Physiol Gastrointest Liver Physiol. 2008;294:G236–G244.

    Article  CAS  PubMed  Google Scholar 

  25. McCafferty DM, Miampamba M, Sihota E, Sharkey KA, Kubes P. Role of inducible nitric oxide synthase in trinitrobenzene sulphonic acid induced colitis in mice. Gut. 1999;45:864–873.

    Article  CAS  PubMed  Google Scholar 

  26. Sugimoto N, Rui T, Yang M, et al. Points of control exerted along the macrophage-endothelial cell-polymorphonuclear neutrophil axis by pecam-1 in the innate immune response of acute colonic inflammation. J Immunol. 2008;181:2145–2154.

    CAS  PubMed  Google Scholar 

  27. Otterbein LE, Bach FH, Alam J, et al. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med. 2000;6:422–428.

    Article  CAS  PubMed  Google Scholar 

  28. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–358.

    Article  CAS  PubMed  Google Scholar 

  29. Grisham MB, Hernandez LA, Granger DN. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am J Physiol. 1986;251:G567–G574.

    CAS  PubMed  Google Scholar 

  30. Niki E, Komuro E. Inhibition of peroxidation of membranes. Basic Life Sci. 1988;49:561–566.

    CAS  PubMed  Google Scholar 

  31. Niki E, Noguchi N, Gotoh N. Dynamics of lipid peroxidation and its inhibition by antioxidants. Biochem Soc Trans. 1993;21:313–317.

    CAS  PubMed  Google Scholar 

  32. Isozaki Y, Yoshida N, Kuroda M, et al. Effect of a novel water-soluble vitamin E derivative as a cure for TNBS-induced colitis in rats. Int J Mol Med. 2006;17:497–502.

    CAS  PubMed  Google Scholar 

  33. Segui J, Gironella M, Sans M, et al. Superoxide dismutase ameliorates TNBS-induced colitis by reducing oxidative stress, adhesion molecule expression, and leukocyte recruitment into the inflamed intestine. J Leukoc Biol. 2004;76:537–544.

    Article  CAS  PubMed  Google Scholar 

  34. Sener G, Aksoy H, Sehirli O, et al. Erdosteine prevents colonic inflammation through its antioxidant and free radical scavenging activities. Dig Dis Sci. 2007;52:2122–2132.

    Article  CAS  PubMed  Google Scholar 

  35. Naito Y, Takagi T, Yoshikawa T. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J Gastroenterol. 2007;42:787–798.

    Article  CAS  PubMed  Google Scholar 

  36. Naito Y, Takagi T, Yoshikawa T. Neutrophil-dependent oxidative stress in ulcerative colitis. J Clin Biochem Nutr. 2007;41:18–26.

    Article  CAS  PubMed  Google Scholar 

  37. Freitas A, Alves-Filho JC, Secco DD, et al. Heme oxygenase/carbon monoxide-biliverdin pathway down regulates neutrophil rolling, adhesion and migration in acute inflammation. Br J Pharmacol. 2006;149:345–354.

    Article  CAS  PubMed  Google Scholar 

  38. Ghosh S, Wilson MR, Choudhury S, et al. Effects of inhaled carbon monoxide on acute lung injury in mice. Am J Physiol Lung Cell Mol Physiol. 2005;288:L1003–L1009.

    Article  CAS  PubMed  Google Scholar 

  39. Shiohira S, Yoshida T, Shirota S, Tsuchiya K, Nitta K. Protective effect of carbon monoxide donor compounds in endotoxin-induced acute renal failure. Am J Nephrol. 2007;27:441–446.

    Article  CAS  PubMed  Google Scholar 

  40. Lee SS, Gao W, Mazzola S, et al. Heme oxygenase-1, carbon monoxide, and bilirubin induce tolerance in recipients toward islet allografts by modulating T regulatory cells. Faseb J. 2007;21:3450–3457.

    Article  CAS  PubMed  Google Scholar 

  41. Brusko TM, Wasserfall CH, Agarwal A, Kapturczak MH, Atkinson MA. An integral role for heme oxygenase-1 and carbon monoxide in maintaining peripheral tolerance by cd4 + cd25 + regulatory T cells. J Immunol. 2005;174:5181–5186.

    CAS  PubMed  Google Scholar 

  42. Hu CM, Lin HH, Chiang MT, Chang PF, Chau LY. Systemic expression of heme oxygenase-1 ameliorates type 1 diabetes in nod mice. Diabetes. 2007;56:1240–1247.

    Article  CAS  PubMed  Google Scholar 

  43. McDaid J, Yamashita K, Chora A, et al. Heme oxygenase-1 modulates the allo-immune response by promoting activation-induced cell death of T cells. Faseb J. 2005;19:458–460.

    CAS  PubMed  Google Scholar 

  44. Pae HO, Oh GS, Choi BM, et al. Carbon monoxide produced by heme oxygenase-1 suppresses T cell proliferation via inhibition of IL-2 production. J Immunol. 2004;172:4744–4751.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a Grant-in-Aid for Scientific Research (grant no. 18590694) from the Ministry of Health, Labour and Welfare of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Naito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, T., Naito, Y., Mizushima, K. et al. Inhalation of Carbon Monoxide Ameliorates TNBS-Induced Colitis in Mice Through the Inhibition of TNF-α Expression. Dig Dis Sci 55, 2797–2804 (2010). https://doi.org/10.1007/s10620-009-1112-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-009-1112-x

Keywords

Navigation