Skip to main content
Log in

Intestinal stem cells and stem cell-based therapy for intestinal diseases

  • Review Paper
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Currently, many gastrointestinal diseases are a major reason for the increased mortality rate of children and adults every year. Additionally, these patients may cope with the high cost of the parenteral nutrition (PN), which aids in the long-term survival of the patients. Other treatment options include surgical lengthening, which is not sufficient in many cases, and intestinal transplantation. However, intestinal transplantation is still accompanied by many challenges, including immune rejection and donor availability, which may limit the transplant’s success. The development of more safe and promising alternative treatments for intestinal diseases is still ongoing. Stem cell-based therapy (SCT) and tissue engineering (TE) appear to be the next promising choices for the regeneration of the damaged intestine. However, suitable stem cell source is required for the SCT and TE process. Thus, in this review we discuss how intestinal stem cells (ISCs) are a promising cell source for small intestine diseases. We will also discuss the different markers were used to identify ISCs. Moreover, we discuss the dominant Wnt signaling pathway in the ISC niche and its involvement in some intestinal diseases. Additionally, we discuss ISC culture and expansion, which are critical to providing enough cells for SCT and TE. Finally, we conclude and recommend that ISC isolation, culture and expansion should be considered when SCT is a treatment option for intestinal disorders. Therefore, we believe that ISCs should be considered a cell source for SCT for many gastrointestinal diseases and should be highlighted in future clinical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PN:

Parenteral nutrition

ISCs:

Intestinal stem cells

SCT:

Stem cell-based therapy

TE:

Tissue engineering

CBCs:

Crypt base columnar cells

DCAMKL1:

Doublecortin and Ca2+/calmodulin-dependent kinase-like 1

LRCs:

Label-retaining cells

Lgr5:

Leucin-rich repeat-containing G-protein-coupled receptor 5

mTert:

Mouse telomerase reverse transcriptase

Fz:

7-Transmembrane Frizzled

LRP:

Single-span transmembrane protein

APC:

Adenomatous polyposis coli

CKI:

Axin displace β-catenin allowing casein kinaseI

GSK3 β:

Glycogen synthase kinase3 β

PP2A:

Protein phosphatase

IBD:

Inflammatory bowel disease

NEC:

Necrotizing enterocolitis

SBS:

Short bowel syndrome

MSCs:

Mesenchymal stem cells

OU:

Organoid units

TESI:

Tissue-engineered small intestine

EGF:

Epidermal growth factor

TrCP:

Transducin repeat-containing protein

References

  • Agopian VG, Chen DC, Avansino JR, Stelzner M (2009) Intestinal stem cell organoid transplantation generates neomucosa in dogs. J Gastrointest Surg 13:971–982

    Article  Google Scholar 

  • Albert MR, Foster RA, Vogel JC (2001) Murine epidermal label-retaining cells isolated by flow cytometry do not express the stem cell markers CD34, Sca-1, or Flk-1. J Invest Dermatol 117:943–948

    Article  CAS  Google Scholar 

  • Almond S, Lindley RM, Kenny SE, Connell MG, Edgar DH (2007) Characterisation and transplantation of enteric nervous system progenitor cells. Gut 56:489–496

    Article  Google Scholar 

  • Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ, Clevers H (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–1007

    Article  CAS  Google Scholar 

  • Barker N, van de Wetering M, Clevers H (2008) The intestinal stem cell. Genes Dev 22:1856–1864

    Article  CAS  Google Scholar 

  • Barker N, Rookmaaker MB, Kujala P, Ng A, Leushacke M, Snippert H, van de Wetering M, Tan S, Van Es JH, Huch M, Poulsom R, Verhaar MC, Peters PJ, Clevers H (2012) Lgr5(+ve) stem/progenitor cells contribute to nephron formation during kidney development. Cell Rep 2:540–552

    Article  CAS  Google Scholar 

  • Beaulieu JF, Ménard D (2012) Isolation, characterization, and culture of normal human intestinal crypt and villus cells. Methods Mol Biol 806:157–173

    Article  CAS  Google Scholar 

  • Belkind-Gerson J, Carreon-Rodriguez A, Benedict LA, Steiger C, Pieretti A, Nagy N, Dietrich J, Goldstein AM (2013) Nestin-expressing cells in the gut give rise to enteric neurons and glial cells. Neurogastroenterol Motil 25:61–69

    Article  CAS  Google Scholar 

  • Bickenbach JR, Chism E (1998) Selection and extended growth of murine epidermal stem cells in culture. Exp Cell Res 244:184–195

    Article  CAS  Google Scholar 

  • Bisceglie V (1933) Über die antineoplastische Immunität; heterologe Einpflanzung von Tumoren in Hühner-embryonen. Ztschr Krebsforsch 40:122–140

  • Bitar KN, Raghavan S (2012) Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 24:7–19

    Article  CAS  Google Scholar 

  • Bixby S, Kruger GM, Mosher JT, Joseph NM, Morrison SJ (2002) Cell-intrinsic differences between stem cells from different regions of the peripheral nervous system regulate the generation of neural diversity. Neuron 35:643–656

    Article  CAS  Google Scholar 

  • Bondurand N, Natarajan D, Thapar N, Atkins C, Pachnis V (2003) Neuron and glia generating progenitors of the mammalian enteric nervous system isolated from foetal and postnatal gut cultures. Development 130:6387–6400

    Article  CAS  Google Scholar 

  • Byrne TA, Wilmore DW, Iyer K, Dibaise J, Clancy K, Robinson MK, Chang P, Gertner JM, Lautz D (2005) Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome. Ann Surg 242:655–661

    Article  Google Scholar 

  • Carletti E, Motta A, Migliaresi C (2011) Scaffolds for tissue engineering and 3D cell culture. Methods Mol Biol 695:17–39

    Article  CAS  Google Scholar 

  • Chan RW, Gargett CE (2006) Identification of label-retaining cells in mouse endometrium. Stem Cells 24:1529–1538

    Article  CAS  Google Scholar 

  • Chan BP, Leong KW (2008) Scaffolding in tissue engineering: general approaches and tissue-specific considerations. Eur Spine J 17:467–479

    Article  CAS  Google Scholar 

  • Chen MK, Beierle EA (2004) Animal models for intestinal tissue engineering. Biomaterials 25:1675–1681

    Article  CAS  Google Scholar 

  • Chen Y, Lee SH, Tsai YH, Tseng SH (2014) Ischemic preconditioning increased the intestinal stem cell activities in the intestinal crypts in mice. J Surg Res 187:85–93

    Article  CAS  Google Scholar 

  • Choi RS, Vacanti JP (1997) Preliminary studies of tissue-engineered intestine using isolated epithelial organoid units on tubular synthetic biodegradable scaffolds. Transplant Proc 29:848–851

    Article  CAS  Google Scholar 

  • Christgen M, Ballmaier M, Lehmann U, Kreipe H (2012) Detection of putative cancer stem cells of the side population phenotype in human tumor cell cultures. Methods Mol Biol 878:201–215

    Article  CAS  Google Scholar 

  • Day RM (2006) Epithelial stem cells and tissue engineered intestine. Curr Stem Cell Res Ther 1:113–120

    Article  CAS  Google Scholar 

  • Dekaney CM, Rodriguez JM, Graul MC, Henning SJ (2005) Isolation and characterization of a putative intestinal stem cell fraction from mouse jejunum. Gastroenterology 129:1567–1580

    Article  CAS  Google Scholar 

  • Ekema G, Milianti S, Boroni G (2009) Total parenteral nutrition in patients with short bowel syndrome. Minerva Pediatr 61:283–291

    CAS  Google Scholar 

  • Evans GS, Flint N, Somers AS, Eyden B, Potten CS (1992) The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J Cell Sci 101:219–231

    Google Scholar 

  • Farlie PG, McKeown SJ, Newgreen DF (2004) The neural crest: basic biology and clinical relationships in the craniofacial and enteric nervous systems. Birth Defects Res C 72:173–189

    Article  CAS  Google Scholar 

  • Ferrari G, Cusella-De Angelis G, Coletta M, Paolucci E, Stornaiuolo A, Cossu G, Mavilio F (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    Article  CAS  Google Scholar 

  • Fukuda K (2003) Regeneration of cardiomyocytes from bone marrow: use of mesenchymal stem cell for cardiovascular tissue engineering. Cytotechnology 41:165–175

    Article  CAS  Google Scholar 

  • Garcia MI, Ghiani M, Lefort A, Libert F, Strollo S, Vassart G (2009) LGR5 deficiency deregulates Wnt signaling and leads to precocious Paneth cell differentiation in the fetal intestine. Dev Biol 331:58–67

    Article  CAS  Google Scholar 

  • Gracz AD, Fuller MK, Wang F, Li L, Stelzner M, Dunn JC, Martin MG, Magness ST (2013) CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells. Stem Cells 31:2024–2030

    Article  CAS  Google Scholar 

  • Grikscheit TC, Siddique A, Ochoa ER, Srinivasan A, Alsberg E, Hodin RA, Vacanti JP (2004) Tissue-engineered small intestine improves recovery after massive small bowel resection. Ann Surg 240:748–754

    Article  Google Scholar 

  • Gupta A, Dixit A, Sales KM, Winslet MC, Seifalian AM (2006) Tissue engineering of small intestines—current status. Biomacromolecules 7:2701–2709

    Article  CAS  Google Scholar 

  • Haegebarth A, Clevers H (2009) Wnt signaling, lgr5, and stem cells in the intestine and skin. Am J Pathol 174:715–721

    Article  CAS  Google Scholar 

  • Hall BK, Hörstadius S (1988) The neural crest. Oxford University Press, London

    Google Scholar 

  • Haramis AP, Begthel H, van den Born M, van Es J, Jonkheer S, Offerhaus GJ, Clevers H (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303:1684–1686

    Article  CAS  Google Scholar 

  • Heanue TA, Pachnis V (2007) Enteric nervous system development and Hirschsprung’s disease: advances in genetic and stem cell studies. Nat Rev Neurosci 8:466–479

    Article  CAS  Google Scholar 

  • Hori Y, Nakamura T, Kimura D, Kaino K, Kurokawa Y, Satomi S, Shimizu Y (2002) Experimental study on tissue engineering of the small intestine by mesenchymal stem cell seeding. J Surg Res 102:156–160

    Article  CAS  Google Scholar 

  • Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978

    Article  CAS  Google Scholar 

  • Jiang H, Edgar BA (2012) Intestinal stem cell function in Drosophila and mice. Curr Opin Genet Dev 22:354–360

    Article  CAS  Google Scholar 

  • Kassem M, Abdallah BM, Yu Z, Ditzel N, Burns JS (2004) The use of hTERT-immortalized cells in tissue engineering. Cytotechnology 45:39–46

    Article  Google Scholar 

  • Kawamoto S, Niwa H, Tashiro F, Sano S, Kondoh G, Takeda J, Tabayashi K, Miyazaki J (2000) A novel reporter mouse strain that expresses enhanced green fluorescent protein upon Cre-mediated recombination. FEBS Lett 470:263–268

    Article  CAS  Google Scholar 

  • Kayahara T, Sawada M, Takaishi S, Fukui H, Seno H, Fukuzawa H, Suzuki K, Hiai H, Kageyama R, Okano H, Chiba T (2003) Candidate markers for stem and early progenitor cells, Musashi-1 and Hes1, are expressed in crypt base columnar cells of mouse small intestine. FEBS Lett 535:131–135

    Article  CAS  Google Scholar 

  • Kim KA, Kakitani M, Zhao J, Oshima T, Tang T, Binnerts M, Liu Y, Boyle B, Park E, Emtage P, Funk WD, Tomizuka K (2005) Mitogenic influence of human R-spondin1 on the intestinal epithelium. Science 309:1256–1259

    Article  CAS  Google Scholar 

  • Kirkman RL (1984) Small bowel transplantation. Transplantation 37:429–433

    Article  CAS  Google Scholar 

  • Kruger GM, Mosher JT, Bixby S, Joseph N, Iwashita T, Morrison SJ (2002) Neural crest stem cells persist in the adult gut but undergo changes in self-renewal, neuronal subtype potential, and factor responsiveness. Neuron 35:657–669

    Article  CAS  Google Scholar 

  • Langer R (2000) Tissue engineering. Mol Ther 1:12–15

    Article  CAS  Google Scholar 

  • Levin DE, Barthel ER, Speer AL, Sala FG, Hou X, Torashima Y, Grikscheit TC (2013) Human tissue-engineered small intestine forms from postnatal progenitor cells. J Pediatr Surg 48:129–137

    Article  Google Scholar 

  • Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545

    Article  CAS  Google Scholar 

  • Li L, Milner LA, Deng Y, Iwata M, Banta A, Graf L, Marcovina S, Friedman C, Trask BJ, Hood L, Torok-Storb B (1998) The human homolog of rat Jagged1 expressed by marrow stroma inhibits differentiation of 32D cells through interaction with Notch1. Immunity 8:43–55

    Article  CAS  Google Scholar 

  • Lindley RM, Hawcutt DB, Connell MG, Almond SL, Vannucchi MG, Faussone-Pellegrini MS, Edgar DH, Kenny SE (2008) Human and mouse enteric nervous system neurosphere transplants regulate the function of aganglionic embryonic distal colon. Gastroenterology 135:205–216

    Article  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  Google Scholar 

  • Markel TA, Crisostomo PR, Lahm T, Novotny NM, Rescorla FJ, Tector J, Meldrum DR (2008) Stem cells as a potential future treatment of pediatric intestinal disorders. J Pediatr Surg 43:1953–1963

    Article  Google Scholar 

  • May R, Sureban SM, Hoang N, Riehl TE, Lightfoot SA, Ramanujam R, Wyche JH, Anant S, Houchen CW (2009) Doublecortin and CaM kinase-like-1 and leucine-rich-repeat-containing G-protein-coupled receptor mark quiescent and cycling intestinal stem cells, respectively. Stem Cells 27:2571–2579

    Article  CAS  Google Scholar 

  • Metzger M, Caldwell C, Barlow AJ, Burns AJ, Thapar N (2009) Enteric nervous system stem cells derived from human gut mucosa for the treatment of aganglionic gut disorders. Gastroenterology 136:2214–2225

    Article  CAS  Google Scholar 

  • Mohamed MS, Chen Y, Yao CL (2014) A serum-free medium developed for in vitro expansion of murine intestinal stem cells. Biotechnol J. doi:10.1002/biot.201400016

  • Montgomery RK, Breault DT (2008) Small intestinal stem cell markers. J Anat 213:52–58

    Article  CAS  Google Scholar 

  • Montgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, Baffour-Awuah NY, Ambruzs DM, Fogli LK, Algra S, Breault DT (2011) Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA 108:179–184

    Article  Google Scholar 

  • Morris RJ, Potten CS (1999) Highly persistent label-retaining cells in the hair follicles of mice and their fate following induction of anagen. J Invest Dermatol 112:470–475

    Article  CAS  Google Scholar 

  • Mosher JT, Yeager KJ, Kruger GM, Joseph NM, Hutchin ME, Dlugosz AA, Morrison SJ (2007) Intrinsic differences among spatially distinct neural crest stem cells in terms of migratory properties, fate determination, and ability to colonize the enteric nervous system. Dev Biol 303:1–15

    Article  CAS  Google Scholar 

  • Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H, Okada S, Fukuda K, Suda T, Matsuzaki Y, Toyama Y, Okano H (2008) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2:392–403

    Article  CAS  Google Scholar 

  • Najdi R, Holcombe RF, Waterman ML (2011) Wnt signaling and colon carcinogenesis: beyond APC. J Carcinog 10:5

    Article  CAS  Google Scholar 

  • Natarajan D, Grigoriou M, Marcos-Gutierrez CV, Atkins C, Pachnis V (1999) Multipotential progenitors of the mammalian enteric nervous system capable of colonising aganglionic bowel in organ culture. Development 126:157–168

    CAS  Google Scholar 

  • Pietersen AM, Evers B, Prasad AA, Tanger E, Cornelissen-Steijger P, Jonkers J, van Lohuizen M (2008) Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol 18:1094–1099

    Article  CAS  Google Scholar 

  • Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713

    Article  CAS  Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Plaks V, Brenot A, Lawson DA, Linnemann JR, Van Kappel EC, Wong KC, de Sauvage F, Klein OD, Werb Z (2013) Lgr5-expressing cells are sufficient and necessary for postnatal mammary gland organogenesis. Cell Rep 3:70–78

    Article  CAS  Google Scholar 

  • Potten CS, Kovacs L, Hamilton E (1974) Continuous labelling studies on mouse skin and intestine. Cell Tissue Kinet 7:271–283

    CAS  Google Scholar 

  • Potten CS, Owen G, Booth D (2002) Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 115:2381–2388

    CAS  Google Scholar 

  • Potten CS, Booth C, Tudor GL, Booth D, Brady G, Hurley P, Ashton G, Clarke R, Sakakibara S, Okano H (2003) Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 71:28–41

    Article  CAS  Google Scholar 

  • Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850

    Article  CAS  Google Scholar 

  • Reyes J, Mazariegos GV, Bond GM, Green M, Dvorchik I, Kosmach-Park B, Abu-Elmagd K (2002) Pediatric intestinal transplantation: historical notes, principles and controversies. Pediatr Transplant 6:193–207

    Article  Google Scholar 

  • Rocha FG, Whang EE (2004) Intestinal tissue engineering: from regenerative medicine to model systems. J Surg Res 120:320–325

    Article  CAS  Google Scholar 

  • Sangiorgi E, Capecchi MR (2008) Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40:915–920

    Article  CAS  Google Scholar 

  • Sansom OJ, Reed KR, Hayes AJ, Ireland H, Brinkmann H, Newton IP, Batlle E, Simon-Assmann P, Clevers H, Nathke IS, Clarke AR, Winton DJ (2004) Loss of Apc in vivo immediately perturbs Wnt signaling, differentiation, and migration. Genes Dev 18:1385–1390

    Article  CAS  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N, Stange DE, van Es JH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    Article  CAS  Google Scholar 

  • Scoville DH, Sato T, He XC, Li L (2008) Current view: intestinal stem cells and signaling. Gastroenterology 134:849–864

    Article  CAS  Google Scholar 

  • Serbedzija GN, Bronner-Fraser M, Fraser SE (1989) A vital dye analysis of the timing and pathways of avian trunk neural crest cell migration. Development 106:809–816

    CAS  Google Scholar 

  • Serbedzija GN, Fraser SE, Bronner-Fraser M (1990) Pathways of trunk neural crest cell migration in the mouse embryo as revealed by vital dye labelling. Development 108:605–612

    CAS  Google Scholar 

  • Shaker A, Rubin DC (2010) Intestinal stem cells and epithelial-mesenchymal interactions in the crypt and stem cell niche. Transl Res 156:180–187

    Article  CAS  Google Scholar 

  • Shibata S, Yasuda A, Renault-Mihara F, Suyama S, Katoh H, Inoue T, Inoue YU, Nagoshi N, Sato M, Nakamura M, Akazawa C, Okano H (2010) Sox10-Venus mice: a new tool for real-time labeling of neural crest lineage cells and oligodendrocytes. Mol Brain 3:31

    Article  CAS  Google Scholar 

  • Simons BD, Clevers H (2011) Stem cell self-renewal in intestinal crypt. Exp Cell Res 317:2719–2724

    Article  CAS  Google Scholar 

  • Slorach EM, Campbell FC, Dorin JR (1999) A mouse model of intestinal stem cell function and regeneration. J Cell Sci 112:3029–3038

    CAS  Google Scholar 

  • Sureban SM, May R, Lightfoot SA, Hoskins AB, Lerner M, Brackett DJ, Postier RG, Ramanujam R, Mohammed A, Rao CV, Wyche JH, Anant S, Houchen CW (2011) DCAMKL-1 regulates epithelial-mesenchymal transition in human pancreatic cells through a miR-200a-dependent mechanism. Cancer Res 71:2328–2338

    Article  CAS  Google Scholar 

  • Uchida H, Yamazaki K, Fukuma M, Yamada T, Hayashida T, Hasegawa H, Kitajima M, Kitagawa Y, Sakamoto M (2010) Overexpression of leucine-rich repeat-containing G protein-coupled receptor 5 in colorectal cancer. Cancer Sci 101:1731–1737

    Article  CAS  Google Scholar 

  • van de Wetering M, Sancho E, Verweij C, de Lau W, Oving I, Hurlstone A, van der Horn K, Batlle E, Coudreuse D, Haramis AP, Tjon-Pon-Fong M, Moerer P, van den Born M, Soete G, Pals S, Eilers M, Medema R, Clevers H (2002) The beta-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 111:241–250

    Article  Google Scholar 

  • van der Flier LG, Clevers H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71:241–260

    Article  CAS  Google Scholar 

  • van der Flier LG, Haegebarth A, Stange DE, van de Wetering M, Clevers H (2009) OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137:15–17

    Article  Google Scholar 

  • Vanuytsel T, Senger S, Fasano A, Shea-Donohue T (2013) Major signaling pathways in intestinal stem cells. Biochim Biophys Acta 1830:2410–2426

    Article  CAS  Google Scholar 

  • von Furstenberg RJ, Gulati AS, Baxi A, Doherty JM, Stappenbeck TS, Gracz AD, Magness ST, Henning SJ (2011) Sorting mouse jejunal epithelial cells with CD24 yields a population with characteristics of intestinal stem cells. Am J Physiol Gastrointest Liver Physiol 300:G409–G419

    Article  CAS  Google Scholar 

  • Wada M, Kato T, Hayashi Y, Selvaggi G, Mittal N, Thompson J, Gonzalez M, Nishida S, Madariaga J, Tzakis A (2006) Intestinal transplantation for short bowel syndrome secondary to gastroschisis. J Pediatr Surg 41:1841–1845

    Article  Google Scholar 

  • Watanabe K, Ueno M, Kamiya D, Nishiyama A, Matsumura M, Wataya T, Takahashi JB, Nishikawa S, Nishikawa S, Muguruma K, Sasai Y (2007) A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 25:681–686

    Article  CAS  Google Scholar 

  • Wulkersdorfer B, Kao KK, Agopian VG, Dunn JC, Wu BM, Stelzner M (2011) Growth factors adsorbed on polyglycolic acid mesh augment growth of bioengineered intestinal neomucosa. J Surg Res 169:169–178

    Article  CAS  Google Scholar 

  • Xu Q, Mellitzer G, Robinson V, Wilkinson DG (1999) In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399:267–271

    Article  CAS  Google Scholar 

  • Yamauchi Y, Abe K, Mantani A, Hitoshi Y, Suzuki M, Osuzu F, Kuratani S, Yamamura K (1999) A novel transgenic technique that allows specific marking of the neural crest cell lineage in mice. Dev Biol 212:191–203

    Article  CAS  Google Scholar 

  • Yen TH, Wright NA (2006) The gastrointestinal tract stem cell niche. Stem Cell Rev 2:203–212

    Article  CAS  Google Scholar 

  • Zakhem E, Raghavan S, Gilmont RR, Bitar KN (2012) Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials 33:4810–4817

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Council, Taiwan (101-2221-E-155-044-MY3).

Conflict of interest

The authors declare no competing interests in relation to this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ling Yao.

Additional information

Mahmoud Shaaban Mohamed and Yun Chen have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M.S., Chen, Y. & Yao, CL. Intestinal stem cells and stem cell-based therapy for intestinal diseases. Cytotechnology 67, 177–189 (2015). https://doi.org/10.1007/s10616-014-9753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9753-9

Keywords

Navigation