Skip to main content

Advertisement

Log in

Intestinal organoids in infants and children

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Recent advances in culturing of intestinal stem cells and pluripotent stem cells have led to the development of intestinal organoids. These are self-organizing 3D structures, which recapitulate the characteristics and physiological features of in vivo intestinal epithelium. Intestinal organoids have allowed the development of novel in vitro models to study various gastrointestinal diseases expanding our understanding of the pathophysiology of diseases and leading to the development of innovative therapies. This article aims to summarize the current usage of intestinal organoids as a model of gastrointestinal diseases and the potential applications of intestinal organoids in infants and children. Intestinal organoids allow the study of intestinal epithelium responses to stress factors. Mimicking intestinal injury such as necrotizing enterocolitis, intestinal organoids increases the expression of pro-inflammatory cytokine genes and shows disruption of tight junctions after they are injured by lipopolysaccharide and hypoxia. In cystic fibrosis, intestinal organoids derived from rectal biopsies have provided benefits in genetic studies and development of novel therapeutic gene modulation. Transplantation of intestinal organoids via enema has been shown to rescue damaged colonic epithelium in mice. In addition, tissue-engineered small intestine derived from intestinal organoids have been successfully established providing a potential novel treatment and a new hope for children with short bowel syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

PSCs:

Pluripotent stem cells

ASCs:

Adult stem cells

Lgr5:

Leucine-rich repeat containing G-protein-coupled receptor 5

NEC:

Necrotizing enterocolitis

HIOs:

Human intestinal organoids

TESI:

Tissue-engineered small intestine

ENCCs:

Enteric neural crest cells

CFTR:

Cystic transmembrane conductance regulator

References

  1. Eiraku M, Sasai Y (2012) Self-formation of layered neural structures in three-dimensional culture of ES cells. Curr Opin Neurobiol 22:768–777

    CAS  PubMed  Google Scholar 

  2. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 345:1247125–1247125

    PubMed  Google Scholar 

  3. Kretzschmar K, Clevers H (2016) Organoids: modeling development and the stem cell niche in a dish. Dev Cell 38:590–600

    CAS  PubMed  Google Scholar 

  4. Dedhia PH, Bertaux-Skeirik N, Zavros Y et al (2016) Organoid models of human gastrointestinal development and disease. Gastroenterology 150:1098–1112

    PubMed  Google Scholar 

  5. Clevers H (2016) Modeling development and disease with organoids. Cell 165:1586–1597

    CAS  PubMed  Google Scholar 

  6. Schweiger PJ, Jensen KB (2016) Modeling human disease using organotypic cultures. Curr Opin Cell Biol 43:22–29

    CAS  PubMed  Google Scholar 

  7. Dutta D, Heo I, Clevers H (2017) Disease modeling in stem cell-derived 3d organoid systems. Trends Mol Med 23:393–410

    CAS  PubMed  Google Scholar 

  8. Dekkers JF, Berkers G, Kruisselbrink E et al (2016) Characterizing responses to CFTR-modulating drugs using rectal organoids derived from subjects with cystic fibrosis. Sci Transl Med 8:344ra84

    PubMed  Google Scholar 

  9. Yui S, Nakamura T, Sato T et al (2012) Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nat Med 18:618–623

    CAS  PubMed  Google Scholar 

  10. Fordham RP, Yui S, Hannan NRF et al (2013) Transplantation of expanded fetal intestinal progenitors contributes to colon regeneration after injury. Cell Stem Cell 13:734–744

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Fukuda M, Mizutani T, Mochizuki W et al (2014) Small intestinal stem cell identity is maintained with functional Paneth cells in heterotopically grafted epithelium onto the colon. Genes Dev 28:1752–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Huch M, Dorrell C, Boj SF et al (2013) In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–250

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Huch M, Bonfanti P, Boj SF et al (2013) Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J 32:2708–2721

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwank G, Koo B-K, Sasselli V et al (2013) Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:653–658

    CAS  PubMed  Google Scholar 

  15. Volk N, Lacy B (2017) Anatomy and physiology of the small bowel. Gastrointest Endosc Clin N Am 27:1–13

    PubMed  Google Scholar 

  16. Potten CS, Gandara R, Mahida YR et al (2009) The stem cells of small intestinal crypts: where are they?: stem cells of small intestinal crypts. Cell Prolif 42:731–750

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Clevers H (2013) The intestinal crypt, a prototype stem cell compartment. Cell 154:274–284

    CAS  PubMed  Google Scholar 

  18. Pinto D, Gregorieff A, Begthel H et al (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17(14):1709–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Clevers H, Nusse R (2012) Wnt/β-catenin signaling and disease. Cell 149:1192–1205

    CAS  PubMed  Google Scholar 

  20. Haegebarth A, Clevers H (2009) Wnt signaling, Lgr5, and stem cells in the intestine and skin. Am J Pathol 174:715–721

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Milano J, McKay J, Dagenais C et al (2004) Modulation of notch processing by gamma-secretase inhibitors causes intestinal goblet cellmetaplasia and induction of genes known to specify gut secretory lineage differentiation. Toxicol Sci 82(1):341–358

    CAS  PubMed  Google Scholar 

  22. Wong VWY, Stange DE, Page ME et al (2012) Lrig1 controls intestinal stem-cell homeostasis by negative regulation of ErbB signalling. Nat Cell Biol 14:401–408

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haramis AP, Begthel H, van den Born M et al (2004) De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine. Science 303(5664):1684–1686

    CAS  PubMed  Google Scholar 

  24. Kosinski C, Li VS, Chan AS et al (2007) Gene expression patterns of human colon tops and basal crypts and BM antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104(39):15418–15423

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Leushacke M, Barker N (2014) Ex vivo culture of the intestinal epithelium: strategies and applications. Gut 63:1345–1354

    CAS  PubMed  Google Scholar 

  26. Merker SR, Weitz J, Stange DE (2016) Gastrointestinal organoids: How they gut it out. Dev Biol 420:239–250

    CAS  PubMed  Google Scholar 

  27. Grün D, Lyubimova A, Kester L et al (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–255

    PubMed  Google Scholar 

  28. Barker N, van Es JH, Kuipers J et al (2007) Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165):1003–1007

    CAS  PubMed  Google Scholar 

  29. Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    CAS  PubMed  Google Scholar 

  30. Sato T, van Es JH, Snippert HJ et al (2011) Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469:415–418

    CAS  PubMed  Google Scholar 

  31. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890

    CAS  PubMed  Google Scholar 

  32. Kim G-A, Spence JR, Takayama S (2017) Bioengineering for intestinal organoid cultures. Curr Opin Biotechnol 47:51–58

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Jabaji Z, Sears CM, Brinkley GJ et al (2013) Use of collagen gel as an alternative extracellular matrix for the in vitro and in vivo growth of murine small intestinal epithelium. Tissue Eng Part C Methods 19:961–969

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Jabaji Z, Brinkley GJ, Khalil HA et al (2014) Type I collagen as an extracellular matrix for the in vitro growth of human small intestinal epithelium. PLoS ONE 9:e107814

    PubMed  PubMed Central  Google Scholar 

  35. Finkbeiner SR, Freeman JJ, Wieck MM et al (2015) Generation of tissue-engineered small intestine using embryonic stem cell-derived human intestinal organoids. Biol Open 4:1462–1472

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Schweinlin M, Wilhelm S, Schwedhelm I et al (2016) Development of an advanced primary human in vitro model of the small intestine. Tissue Eng Part C Methods 22:873–883

    CAS  PubMed  Google Scholar 

  37. de Lau W, Barker N, Low TY et al (2011) Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 476:293–297

    PubMed  Google Scholar 

  38. Sato T, Clevers H (2013) Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:1190–1194

    CAS  PubMed  Google Scholar 

  39. Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and barrett’s epithelium. Gastroenterology 141:1762–1772

    CAS  PubMed  Google Scholar 

  40. Dignass AU, Sturm A (2001) Peptide growth factors in the intestine. Eur J Gastroenterol Hepatol 13(7):763–770

    CAS  PubMed  Google Scholar 

  41. Kosinski C, Li VS, Chan AS et al (2007) Gene expression patterns of human colon tops and basal crypts and BMP antagonists as intestinal stem cell niche factors. Proc Natl Acad Sci USA 104(39):15418–15423

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Navis M, Garcia TM, Renes IB et al (2018) Mouse fetal intestinal organoids: new model to study epithelial maturation from suckling to weaning. EMBO Rep. https://doi.org/10.15252/embr.201846221

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ootani A, Li X, Sangiorgi E et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15:701–706

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pastuła A, Middelhoff M, Brandtner A et al (2016) Three-dimensional gastrointestinal organoid culture in combination with nerves or fibroblasts: a method to characterize the gastrointestinal stem cell niche. Stem Cells International 2016:1–16

    Google Scholar 

  45. Spence JR, Mayhew CN, Rankin SA et al (2011) Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:105–109

    PubMed  Google Scholar 

  46. Cao L, Gibson JD, Miyamoto S et al (2011) Intestinal lineage commitment of embryonic stem cells. Differentiation 81:1–10

    CAS  PubMed  Google Scholar 

  47. Wells JM, Spence JR (2014) How to make an intestine. Development 141:752–760

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Aurora M, Spence JR (2016) hPSC-derived lung and intestinal organoids as models of human fetal tissue. Dev Biol 420:230–238

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sinagoga KL, Wells JM (2015) Generating human intestinal tissues from pluripotent stem cells to study development and disease. EMBO J 34:1149–1163

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsai Y-H, Nattiv R, Dedhia PH et al (2017) In vitro patterning of pluripotent stem cell-derived intestine recapitulates in vivo human development. Development 144:1045–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Mattei P, Nichol PF, Rollins MD et al (2017) Fundamentals of pediatric surgery, 2nd edn. Springer International Publishing, Berlin

    Google Scholar 

  52. Hill DR, Spence JR (2017) Gastrointestinal organoids: understanding the molecular basis of the host-microbe interface. Cell Mol Gastroenterol Hepatol 3:138–149

    PubMed  Google Scholar 

  53. Leslie JL, Young VB (2016) A whole new ball game: stem cell-derived epithelia in the study of host–microbe interactions. Anaerobe 37:25–28

    PubMed  Google Scholar 

  54. Senger S, Ingano L, Freire R et al (2018) Human fetal-derived enterospheres provide insights on intestinal development and a novel model to study necrotizing enterocolitis (NEC). Cell Mol Gastroenterol Hepatol 5:549–568

    PubMed  PubMed Central  Google Scholar 

  55. Li B, Lee C, Cadete M et al (2019) Neonatal intestinal organoids as an ex vivo approach to study early intestinal epithelial disorders. Pediatr Surg Int 35:3–7

    PubMed  Google Scholar 

  56. Wu RY, Li B, Koike Y et al (2018) Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res 63:e1800658

    PubMed  Google Scholar 

  57. Leslie JL, Huang S, Opp JS et al (2015) Persistence and toxin production by clostridium difficile within human intestinal organoids result in disruption of epithelial paracellular barrier function. Infect Immun 83:138–145

    PubMed  Google Scholar 

  58. Wales PW, Christison-Lagay ER (2010) Short bowel syndrome: epidemiology and etiology. Semin Pediatr Surg 19:3–9

    PubMed  Google Scholar 

  59. Wales PW, de Silva N, Kim J et al (2004) Neonatal short bowel syndrome: population-based estimates of incidence and mortality rates. J Pediatr Surg 39(5):690–695

    PubMed  Google Scholar 

  60. Schalamon J, Mayr JM, Höllwarth ME (2003) Mortality and economics in short bowel syndrome. Best Pract Res Clin Gastroenterol 17(6):931–942

    CAS  PubMed  Google Scholar 

  61. Duro D, Kalish LA, Johnston P et al (2010) Risk factors for intestinal failure in infants with necrotizing enterocolitis: a glaser pediatric research network study. J Pediatr 157:203–208.e1

    PubMed  PubMed Central  Google Scholar 

  62. Ganousse-Mazeron S, Lacaille F, Colomb-Jung V et al (2015) Assessment and outcome of children with intestinal failure referred for intestinal transplantation. Clin Nutr 34:428–435

    CAS  PubMed  Google Scholar 

  63. Goulet O, Baglin-Gobet S, Talbotec C et al (2005) Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg 15(2):95–101

    CAS  PubMed  Google Scholar 

  64. Fullerton BS, Hong CR, Jaksic T (2017) Long-term outcomes of pediatric intestinal failure. Semin Pediatr Surg 26:328–335

    PubMed  Google Scholar 

  65. Coletta R, Khalil BA, Morabito A (2014) Short bowel syndrome in children: surgical and medical perspectives. Semin Pediatr Surg 23:291–297

    PubMed  Google Scholar 

  66. Grant CN, Grikscheit TC (2013) Tissue engineering: a promising therapeutic approach to necrotizing enterocolitis. Semin Pediatr Surg 22:112–116

    PubMed  Google Scholar 

  67. Barthel ER, Speer AL, Levin DE et al (2012) Tissue engineering of the intestine in a murine model. J Visual Exp

  68. Levin DE, Barthel ER, Speer AL et al (2013) Human tissue-engineered small intestine forms from postnatal progenitor cells. J Pediatr Surg 48:129–137

    PubMed  Google Scholar 

  69. Suita S, Taguchi T, Ieiri S et al (2005) Hirschsprung's disease in Japan: analysis of 3852 patients based on a nationwide survey in 30 years. J Pediatr Surg 40(1):197–201 (discussion 201–2)

    PubMed  Google Scholar 

  70. Langer JC (2013) Hirschsprung disease. Curr Opin Pediatr 25:368–374

    PubMed  Google Scholar 

  71. Wieck MM, El-Nachef WN, Hou X et al (2016) Human and murine tissue-engineered colon exhibit diverse neuronal subtypes and can be populated by enteric nervous system progenitor cells when donor colon is aganglionic. Tissue Eng Part A 22:53–64

    CAS  PubMed  Google Scholar 

  72. Fattahi F, Steinbeck JA, Kriks S et al (2016) Deriving human ENS lineages for cell therapy and drug discovery in Hirschsprung disease. Nature 531:105–109

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Workman MJ, Mahe MM, Trisno S et al (2017) Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system. Nat Med 23:49–59

    CAS  PubMed  Google Scholar 

  74. Schlieve CR, Fowler KL, Thornton M et al (2017) Neural crest cell implantation restores enteric nervous system function and alters the gastrointestinal transcriptome in human tissue-engineered small intestine. Stem Cell Rep 9:883–896

    CAS  Google Scholar 

  75. Ratjen F, Bell SC, Rowe SM et al (2015) Cystic fibrosis. Nat Rev Dis Prim (Article number 15010)

  76. Milla CE, Moss RB (2015) Recent advances in cystic fibrosis. Curr Opin Pediatr 27:317–324

    PubMed  Google Scholar 

  77. Brodlie M, Haq IJ, Roberts K et al (2015) Targeted therapies to improve CFTR function in cystic fibrosis. Genome Medicine 7:101

    PubMed  PubMed Central  Google Scholar 

  78. Davies JC (2015) The future of CFTR modulating therapies for cystic fibrosis. Curr Opin Pulm Med 21:579–584

    CAS  PubMed  Google Scholar 

  79. Dekkers JF, Wiegerinck CL, de Jonge HR et al (2013) A functional CFTR assay using primary cystic fibrosis intestinal organoids. Nat Med 19:939–945

    CAS  PubMed  Google Scholar 

  80. Dekkers JF, van der Ent CK, Beekman JM (2013) Novel opportunities for CFTR-targeting drug development using organoids. Rare Dis 1:e27112

    PubMed  PubMed Central  Google Scholar 

  81. Duncan AW, Dorrell C, Grompe M (2009) Stem cells and liver regeneration. Gastroenterology 137:466–481

    PubMed  Google Scholar 

  82. Miyajima A, Tanaka M, Itoh T (2014) Stem/progenitor cells in liver development, homeostasis, regeneration, and reprogramming. Cell Stem Cell 14:561–574

    CAS  PubMed  Google Scholar 

  83. Theise ND, Saxena R, Portmann BC et al (1999) The canals of Hering and hepatic stem cells in humans. Hepatology 30(6):1425–1433

    CAS  PubMed  Google Scholar 

  84. Kuwahara R, Kofman AV, Landis CS et al (2008) The hepatic stem cell niche: Identification by label-retaining cell assay. Hepatology 47:1994–2002

    PubMed  Google Scholar 

  85. Zhang L, Theise N, Chua M, Reid LM (2008) The stem cell niche of human livers: symmetry between development and regeneration. Hepatology 48:1598–1607

    CAS  PubMed  Google Scholar 

  86. Kordes C, Häussinger D (2013) Hepatic stem cell niches. J Clin Investig 123:1874–1880

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Hindley CJ, Cordero-Espinoza L, Huch M (2016) Organoids from adult liver and pancreas: stem cell biology and biomedical utility. Dev Biol 420:251–261

    CAS  PubMed  Google Scholar 

  88. Huch M, Gehart H, van Boxtel R et al (2015) Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 160:299–312

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Asai A, Miethke A, Bezerra JA (2015) Pathogenesis of biliary atresia: defining biology to understand clinical phenotypes. Nat Rev Gastroenterol Hepatol 12:342–352

    PubMed  PubMed Central  Google Scholar 

  90. Si-Tayeb K, Noto FK, Nagaoka M et al (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305

    CAS  PubMed  Google Scholar 

  91. Zhang W, Li W, Liu B et al (2012) Efficient generation of functional hepatocyte-like cells from human fetal hepatic progenitor cells in vitro. J Cell Physiol 227:2051–2058

    CAS  PubMed  Google Scholar 

  92. Ma X, Duan Y, Tschudy-Seney B et al (2013) Highly efficient differentiation of functional hepatocytes from human induced pluripotent stem cells. Stem Cells Transl Med 2:409–419

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Nagamoto Y, Takayama K, Tashiro K et al (2015) Efficient engraftment of human induced pluripotent stem cell-derived hepatocyte-like cells in uPA/SCID mice by overexpression of FNK, a Bcl-xLMutant gene. Cell Transplant 24:1127–1138

    PubMed  Google Scholar 

  94. Ye J, Shirakigawa N, Ijima H (2015) Hybrid organoids consisting of extracellular matrix gel particles and hepatocytes for transplantation. J Biosci Bioeng 120:231–237

    CAS  PubMed  Google Scholar 

  95. Ye J, Shirakigawa N, Ijima H (2016) Fetal liver cell-containing hybrid organoids improve cell viability and albumin production upon transplantation. J Biosci Bioeng 121:701–708

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Prof. Agostino Pierro was supported by the Canadian Institutes of Health Research (CIHR) Foundation Grant (#353857) and the Robert M. Filler Chair of Surgery, The Hospital for Sick Children.

Funding

This study did not receive any sources of funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostino Pierro.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chusilp, S., Li, B., Lee, D. et al. Intestinal organoids in infants and children. Pediatr Surg Int 36, 1–10 (2020). https://doi.org/10.1007/s00383-019-04581-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-019-04581-3

Keywords

Navigation