Skip to main content
Log in

Alterations in dysadherin expression and F-actin reorganization: a possible mechanism of hypericin-mediated photodynamic therapy in colon adenocarcinoma cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Dysadherin is a recently found anti-adhesion molecule, therefore detection and down regulation of its expression is promising in cancer treatment. The up-regulation of dysadherin contributes to colon cancer recurrence and metastasis. Dysadherin also has connections with cytoskeletal proteins and it can cause alterations in the organisation of filamentous actin (F-actin) in metastatic cancers. In this study, hypericin (HYP)-mediated photodynamic therapy (PDT) was performed in two different grade colon adenocarcinoma cell lines HT-29 (Grade I) and Caco-2 (Grade II). Cells were treated with 0.04, 0.08 or 0.15 μM HYP concentrations and irradiated with (4 J/cm2) fluorescent lamps. The effects of HYP was examined 16 and 24 h after the activation. We investigated for the first time the effect of HYP-mediated PDT on the expression of dysadherin and F-actin organisation. According to the results, HYP mediated PDT caused a decrease in gene expression and immunofluorescence staining of dysadherin and an increase in actin stress fibers and actin aggregates in HT-29 and Caco-2 cell lines. Besides, cytotoxicity, number of floating cells and apoptotic index changed depending on the cell type, HYP concentration and incubation time. We have demonstrated for the first time that dysadherin and F-actin could be target molecules for HYP-mediated PDT in HT-29 and Caco-2 colon cancer cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ackroyd R, Kelty C, Brown N, Reed M (2001) The history of photodetection and photodynamic therapy. Photochem Photobiol 74:656–669

    Article  CAS  Google Scholar 

  • Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn 7:61–75

    Article  CAS  Google Scholar 

  • Aoki S, Shimamura T, Shibata T, Nakanishi Y, Moriya Y, Sato Y, Kitajima M, Sakamoto M, Hirohashi S (2003) Prognostic significance of dysadherin expression in advanced colorectal carcinoma. Br J Cancer 88:726–732

    Article  CAS  Google Scholar 

  • Ashkenazi A (2002) Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat Rev Drug Discov 2:420–430

    Article  CAS  Google Scholar 

  • Batistatou A, Charalabopoulos AK, Scopa CD, Nakanishi Y, Kappas A, Hirohashi S, Agnantis NJ, Charalabopoulos K (2006) Expression patterns of dysadherin and E-cadherin in lymph node metastases of colorectal carcinoma. Virchows Arch 448:763–767

    Article  CAS  Google Scholar 

  • Blank M, Mandel M, Keisari Y, Meruelo D, Lavie G (2003) Enhanced ubiquitinylation of heat shock protein 90 as a potential mechanism for mitotic cell death in cancer cells induced with hypericin. Cancer Res 63:8241–8247

    CAS  Google Scholar 

  • Buda A, Pignatelli M (2004) Cytoskeletal network in colon cancer: from genes to clinical application. Int J Biochem Cell Biol 36:759–765

    Article  CAS  Google Scholar 

  • Chaturvedi V, Sreedhar AS (2010) Hsp90 inhibition induces destabilization of actin cytoskeleton in tumor cells: Functional significance of Hsp90 interaction with F-actin. Asian Pac J Trop Med 3:715–722

    Google Scholar 

  • Coates TD, Watts RG, Hartman R, Howard TH (1992) Distribution to development of polar shape in human polymorphonuclear neutrophils. J Cell Biol 117:765–774

    Article  CAS  Google Scholar 

  • Dahl JE, Mary J, Frangou-Polyzois MJ, Polyzois GL (2006) In vitro biocompatibility of denture relining materials. Gerodontology 23:17–22

    Article  Google Scholar 

  • Di Venosa G, Rodriguez L, Mamone L, Gándara L, Rossetti MV, Batlle A, Casas A (2012) Changes in actin and E-cadherin expression induced by 5-aminolevulinic acid photodynamic therapy in normal and ras-transfected human mammary cell lines. J Photochem Photobiol B Biol 106:47–52

    Article  Google Scholar 

  • Galanou MC, Theodossiou TA, Tsiourvas D, Sideratou Z, Paleos CM (2008) Interactive transport, subcellular relocation and enhanced phototoxicity of hypericin encapsulated in guanidinylated liposomes via molecular recognition. Photochem Photobiol 84:1073–1083

    CAS  Google Scholar 

  • Grzanka A, Grzanka D, Orlikowska M (2003) Cytoskeletal reorganization during process of apoptosis induced by cytostatic drugs in K-562 and HL-60 leukemia cell lines. Biochem Pharmacol 66:1611–1617

    Article  CAS  Google Scholar 

  • Hendrickx N, Volanti C, Moens U, Seternes OM, de Witte P, Vandenheede JR, Piette J, Agostinis P (2003) Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 MAPK in hypericin-mediated photodynamic therapy of human cancer cells. J Biol Chem 278:52231–52239

    Article  CAS  Google Scholar 

  • Hirohashi S, Kanai Y (2003) Cell adhesion system and human cancer morphogenesis. Cancer Sci 94:575–581

    Article  CAS  Google Scholar 

  • Ino Y, Gotoh M, Sakamoto M, Tsukagoshi K, Hirohashi S (2002) Dysadherin a cancer associated cell membrane glycoprotein, down regulates E-cadherin and promotes metastasis. Med Sci 99:365–370

    CAS  Google Scholar 

  • Jendzelovsky R, Mike J, Koval K, Soucek K, Procházková J, Kello M, Saková V, Hofmanová J, Kozubík A, Fedoroko P (2009) Drug efflux transporters, MRP1 and BCRP, affect the outcome of hypericin-mediated photodynamic therapy in HT-29 adenocarcinoma cells. Photochem Photobiol Sci 8:1716–1723

    Article  CAS  Google Scholar 

  • Kamuhabwa AR, Augustijns P, de Witte PA (1999) In vitro transport and uptake of protohypericin and hypericin in the Caco-2 model. Int J Pharm 188:81–86

    Article  CAS  Google Scholar 

  • Kaplan JH (2005) A moving new role for the sodium pump in epithelial cells and carcinomas. Sci STKE 289:31

    Google Scholar 

  • Korb T, Schlüter K, Enns A, Spiegel HU, Senninger N, Nicolson GL, Haier J (2004) Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion. Exp Cell Res 299:236–247

    Article  CAS  Google Scholar 

  • Ku GR, Tan LBH, Yau T, Boku N, Laohavinij S, Cheng AL, Kang YK, Lopes GL (2012) Management of colon cancer: resource-stratified guidelines from the Asian oncology. Lancet Oncol 13:e470–e481

    Article  Google Scholar 

  • Lev-Ari S, Strier L, Kazanov D, Shapiro LM, Sobol HD, Pinchuk I, Marian B, Lichtenberg D, Arber N (2005) Celecoxib and curcumin synergistically inhibit the growth of colorectal cancer cells. Clin Cancer Res 11:6738–6744

    Article  CAS  Google Scholar 

  • Mikeš J, Kleban J, Saèková V, Horváth V, Jamborová E, Vaculová A, Kozubík A, Hofmanová J, Fedoroèko P (2007) Necrosis predominates in the cell death of human colon adenocarcinoma HT-29 cells treated under variable conditions of photodynamic therapy with hypericin. Photochem Photobiol Sci 6:758–766

    Article  Google Scholar 

  • Mitchell DM, Ball JM (2004) Characterization of a spontaneously polarizing HT-29 cell line, HT-29/cl.f8. In Vitro Cell Dev Anim 40:297–301

    Article  Google Scholar 

  • Nam JS, Hirohashi S, Wakefield LM (2007) Dysadherin: a new player in cancer progression. Cancer Lett 255:161–169

    Article  CAS  Google Scholar 

  • Park JR, Kim RJ, Lee YK, Kim SR, Roh KJ, Oh SH, Kong G, Kang KS, Nam JS (2011) Dysadherin can enhance tumorigenesis by conferring properties of stem-like cells to hepatocellular carcinoma cells. J Hepatol 54:122–131

    Article  CAS  Google Scholar 

  • Paszkoa E, Ehrhardt C, Senge MO, Kelleher DP, Reynolds JV (2011) Nanodrug applications in photodynamic therapy. Photodiagnosis Photodyn 8:14–29

    Article  Google Scholar 

  • Ray RM, Bhattacharya S, Johnson LR (2011) Mdm2 inhibition induces apoptosis in p53 deficient humancolon cancer cells by activating p73-and E2F1mediatedexpression of PUMA and Siva-1. Apoptosis 16:35–44

    Article  CAS  Google Scholar 

  • Reed JC (1998) Bcl-2 family proteins. Oncogene 17:3225–3236

    Article  Google Scholar 

  • Salvador A (2008) Investigation about the mechanism of action of new antiproliferative compounds. Ph.D. thesis. Universita’ Degli Studi Di Padova

  • Sanovic R, Verwanger T, Hartl A, Krammer B (2011) Low dose hypericin-PDT induces complete tumor regression in BALB/c mice bearing CT26 colon carcinoma. Photodiagnosis Photodyn Ther 8:291–296

    Article  CAS  Google Scholar 

  • Šemelakova M, Mikeš J, Jendzelovsky R, Fedorocko P (2012) The pro-apoptotic and anti-invasive effects of hypericin-mediated photodynamic therapy are enhanced by hyperforin or aristoforin in HT-29 colon adenocarcinoma cells. J Photochem Photobiol B Biol 117:115–125

    Article  Google Scholar 

  • Shimamura T, Yasuda J, Ino Y, Gotoh M, Tsuchiya A, Nakajima A, Sakamoto M, Kanai Y, Hirohashi S (2004) Dysadherin expression facilitates cell motility and metastatic potential of human pancreatic cancer cells. Cancer Res 64:6989–6995

    Article  CAS  Google Scholar 

  • Theodossiou TA, Hothersall JS, De Witte PA, Pantos A, Agostinis P (2009) The multifaceted photocytotoxic profile of hypericin. Mol Pharm 6:1775–1789

    Article  CAS  Google Scholar 

  • Wicki A, Lehembre F (2006) Tumor invasion in the absence of epithelialmesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272

    Article  CAS  Google Scholar 

  • Yamazaki T, Yamazaki I, Nishimura Y, Dai R, Song PS (1993) Time-resolved fluorescence spectroscopy and photolysis of the photoreceptor blepharismin. Biochim Biophys Acta 1143:319–326

    Article  CAS  Google Scholar 

  • Yamazaki D, Kurisu S, Takenawa T (2005) Regulation of cancer cell motility through actin reorganization. Cancer Sci 96:379–386

    Article  CAS  Google Scholar 

  • Yang ZR, Liu M, Peng XL, Zhang JX, Dong WG (2012) Noscapine induces mitochondria-mediated apoptosis in human colon cancer cells in vivo and in vitro. Biochem Biophys Res Commun 421:627–633

    Article  CAS  Google Scholar 

  • Yoo JO, Ha KS (2012) New insights into the mechanisms for photodynamic therapy-induced cancer cell death. Int Rev Cel Mol Bio 295:139–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Hacettepe University Scientific Research Projects Coordination Unit (09 01 601 011) and it is a part of phD thesis of Aysun Kılıç Süloğlu. The authors want to thank Şükran Yılmaz, Hande Canpınar, Çağatay Karaaslan for their help in the analysis and sharing their experiences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysun Kılıç Süloğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kılıç Süloğlu, A., Selmanoğlu, G. & Akay, M.T. Alterations in dysadherin expression and F-actin reorganization: a possible mechanism of hypericin-mediated photodynamic therapy in colon adenocarcinoma cells. Cytotechnology 67, 311–330 (2015). https://doi.org/10.1007/s10616-013-9688-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9688-6

Keywords

Navigation