Skip to main content
Log in

Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Camptothecin (CPT) and Nutlin-3 caused apoptosis by increasing p53 protein and its activation in intestinal epithelial cells (IEC-6). We studied the effectiveness of these inducers on apoptosis in human colon cancer cells (Caco2) lacking p53 expression. CPT failed to activate caspase-3 and cause apoptosis in these cells. The absence of p53 expression, higher basal Bcl-xL and lower Bax proteins prevented CPT-induced apoptosis. However, the Mdm2 antagonist Nutlin-3 induced apoptosis in a dose dependent manner by activating caspases-9 and -3. Nutlin-3 prevented the activation of AKT via PTEN-mediated inhibition of the PI3K pathway. Nutlin-3 increased the phosphorylation of retinoblastoma protein causing E2F1 release leading to induction of Siva-1. Nutlin-3-mediated degradation of Mdm2 caused the accumulation of p73, which induced the expression of p53 up-regulated modulator of apoptosis (PUMA). E2F1 and p73 knockdown decreased the expression of Siva and PUMA, respectively and abolished Nutlin-3-induced caspase-3 activation. Cycloheximide (CHX) inhibited Nutlin-3-induced Siva, Noxa, and PUMA expression and inhibited apoptosis in IEC-6 and Caco2 cells. These results indicate that translation of mRNAs induced by Nutlin-3 is critical for apoptosis. In summary, apoptosis in Caco2 cells lacking functional p53 occurred following the disruption of Mdm2 binding with p73 and Rb leading to the expression of pro-apoptotic proteins, PUMA, Noxa, and Siva-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hollstein M, Sidransky D, Vogelstein B, Harris C (1991) p53 mutation in human cancers. Science 253:49–53

    Article  CAS  PubMed  Google Scholar 

  2. Lowe SW, Bodis S, McClatchey A, Remington L, Ruley HE, Fisher DE, Housman DE, Jacks T (1991) p53 status and the efficiency of cancer theraphy. Science 266:807–810

    Article  Google Scholar 

  3. Kaghad M, Bonnet H, Yang A, Creancier L, Biscan JC, Valent A, Minty A, Chalon P, Lelias JM, Dumont X et al (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  CAS  PubMed  Google Scholar 

  4. Benard J, Douc-Rasy S, Ahomadegbe JC (2003) TP53 family members and human cancers. Hum Mutat 21:182–191

    Article  CAS  PubMed  Google Scholar 

  5. Prives C, Hall PA (1999) The p53 pathway. J Pathol 187:112–126

    Article  CAS  PubMed  Google Scholar 

  6. Oren M (1999) Regulation of the p53 tumor suppressor protein. J Biol Chem 274:36031–36034

    Article  CAS  PubMed  Google Scholar 

  7. Levrero M, De Laurenzi V, Costanzo A, Gong J, Wang JY, Melino G (2000) The p53/p63/p73 family of transcription factors: overlapping and distinct functions. J Cell Sci 113:1661–1670

    CAS  PubMed  Google Scholar 

  8. Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18:90–95

    Article  PubMed  Google Scholar 

  9. Yang Y, Li CC, Weissman AM (2004) Regulating the p53 system through ubiquitination. Oncogene 23:2096–2106

    Article  CAS  PubMed  Google Scholar 

  10. Lau LMS, Nugent JK, Zhao X, Irwin MS (2008) Hdm2 antagonist Nutlin-3 disrupts p73-Hdm2 binding and enhances p73 function. Oncogene 27:997–1003

    Article  CAS  PubMed  Google Scholar 

  11. Iwakuma T, Lozano G (2003) MDM2, an introduction. Mol Cancer Res 14:993–1000

    Google Scholar 

  12. Jost CA, Marin MC, Kaelin WJ (1997) p73 is a human p53-related protein that can induce apoptosis. Nature 389:191–194

    Article  CAS  PubMed  Google Scholar 

  13. Zhu J, Jiang J, Zhou W, Chen X (1998) The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res 58:5061–5065

    CAS  PubMed  Google Scholar 

  14. Yu J, Zhang L, Hwang PM, Rago C, Kinzler KW, Vogelstein B (1999) Identification and classification of p3-upregulated genes. Proc Natl Acad Sci USA 95:14517–14522

    Article  Google Scholar 

  15. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310

    Article  CAS  PubMed  Google Scholar 

  16. Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R, Niedobitek G, Brabletz T, Kirchner T (2001) The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear ß-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159:1613–1617

    CAS  PubMed  Google Scholar 

  17. Scoumanne A, Harms KL, Chen X (2005) Structural basis for gene activation by p53 family members. Cancer Biol Ther 4:1178–1185

    CAS  PubMed  Google Scholar 

  18. Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin WG Jr (2003) Chemosensitivity linked to p73 function. Cancer Cell 3:403–410

    Article  CAS  PubMed  Google Scholar 

  19. Ozaki T, Nakagawara A (2005) p73, a sophisticated p53 family member in the cancer world. Cancer Sci 96:729–737

    Article  CAS  PubMed  Google Scholar 

  20. Goh HS, Yao J, Smith DR (1995) p53 point mutation and survival in colorectal cancer patients. Cancer Res 55:5217–5221

    CAS  PubMed  Google Scholar 

  21. Smith DR, Ji CY, Goh HS (1996) Prognostic significance of p53 overexpression and mutation in colorectal adenocarcinomas. Br J Cancer 74:216–223

    Article  CAS  PubMed  Google Scholar 

  22. Bunz F, Hwang PM, Torrance C, Waldman T, Zhang Y, Dillehay L, Williams J, Lengauer C, Kinzler KW, Vogelstein B (1999) Disruption of p53 in human cancer cells alters the responses to therapeutic agents. J Clin Investig 104:263–269

    Article  CAS  PubMed  Google Scholar 

  23. Daoud SS, Munson PJ, Reinhold W, Young L, Prabhu VV, Yu Q, LaRose J, Kohn KW, Weinstein JN, Pommier Y (2003) Impact of p53 knockout and topotectan treatment on gene expression profile in human colon cancer cells: a pharmacogenomic study. Cancer Res 63:2782–2793

    CAS  PubMed  Google Scholar 

  24. Quaroni A, Wands J, Trelstad RL, Isselbacher KJ (1979) Epitheloid culture from rat small intestine. Characterization by morphologic and immunologic criteria. J Cell Biol 80:248–265

    Article  CAS  PubMed  Google Scholar 

  25. Bhattacharya S, Ray RM, Johnson LR (2009) Role of polyamines in p53-dependent apoptosis of intestinal epithelial cells. Cell Signal 21:509–522

    Article  CAS  PubMed  Google Scholar 

  26. Bhattacharya S, Ray RM, Johnson LR (2006) Integrin beta3-mediated Src activation regulates apoptosis in IEC-6 cells via Akt and STAT3. Biochem J 397:437–447

    Article  CAS  PubMed  Google Scholar 

  27. Ray RM, Bhattacharya S, Johnson LR (2007) EGFR plays a pivotal role in the regulation of polyamine-dependent apoptosis in intestinal epithelial cells. Cell Signal 19:2519–2527

    Article  CAS  PubMed  Google Scholar 

  28. Bhattacharya S, Ray RM, Johnson LR (2003) Polyamines are required for activation of c-Jun NH2-terminal kinase and apoptosis in response to TNF-α in IEC-6 cells. Am J Physiol Gastrointest Liver Physiol 285:G980–G991

    CAS  PubMed  Google Scholar 

  29. Ray RM, McCormack SA, Johnson LR (2001) Polyamine depletion arrests growth of IEC-6 and Caco-2 cells by different mechanisms. Am J Physiol Gastrointest Liver Physiol 281:G37–G43

    CAS  PubMed  Google Scholar 

  30. Houlston RS (2001) What we could do now: molecular pathology of colorectal cancer. Mol Pathol 54:206–214

    Article  CAS  PubMed  Google Scholar 

  31. Tozluoglu M, Karaca E, Haligolu T, Nussinov R (2008) Cataloging and organizing p73 interactions in cell cycle arrest and apoptosis. Nucleic Acids Res 36:5033–5049

    Article  CAS  PubMed  Google Scholar 

  32. Fontemaggi G, Kela I, Amariglio N, Rechavi G, Krishnamurthy J, Strano S, Sacchi A, Givol D, Blandino G (2002) Identification of direct p73 target genes combining DNA microarray and chromatin immunoprecipitation analyses. J Biol Chem 277:43359–43368

    Article  CAS  PubMed  Google Scholar 

  33. Stiewe T, Putzer BM (2000) Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 26:464–469

    Article  CAS  PubMed  Google Scholar 

  34. Furukawa Y, Nishimura N, Matsuda M, Kano Y, Nakamura M (2002) Apaf-1 Is a Mediator of E2F–1-induced Apoptosis. J Biol Chem 277:39760–39768

    Article  CAS  PubMed  Google Scholar 

  35. Kitagawa M, Aonuma M, Fukutake S, McCormack F (2008) E2F–1 transcriptional activity is a critical determinant of Mdm2 antagonist-induced apoptosis in human tumor cell lines. Oncogene 27:5303–5314

    Article  CAS  PubMed  Google Scholar 

  36. Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W, Flores ER, Tsai KY, Jacks T, Vousden KH, Kaelin WG Jr (2000) Role for the p53 homologue p73 in E2F–1-induced apoptosis. Nature 407:645–648

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Bodmer WF (2006) Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci USA 103:976–981

    Article  CAS  PubMed  Google Scholar 

  38. Magrini R, Bhonde MR, Hanski M-L, Notter M, Scherubal H, Richard Boland C, Zeitz M, Hanski C (2002) Cellular effects of CPT-11 on colon carcinoma cells: Dependence on p53 and hMLH1 status. Int J Cancer 101:23–31

    Article  CAS  PubMed  Google Scholar 

  39. Abal M, Bras-Goncalves R, Judde J-G, Fishi H, de Cremoux P, Louvard D, Magdelenat H, Robine S, Poupon M-F (2004) Enhanced sensitivity to irinotectan by cdk1 inhibition in the p53-deficient HT29 human cancer cell line. Oncogene 23:1737–1744

    Article  CAS  PubMed  Google Scholar 

  40. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Fotouchi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  41. Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H, Zhao X, Vu BT, Qing W, Packman K, Myklebost O, Heimbrook DC, Vassilev LT (2006) Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103:1888–1893

    Article  CAS  PubMed  Google Scholar 

  42. Piette J, Neel H, Maréchal V (1997) Mdm2: keeping p53 under control. Oncogene 15:1001–1010

    Article  CAS  PubMed  Google Scholar 

  43. Dobbelstein M, Wienzek S, Konig C, Roth J (1999) Inactivation of the p53-homologue p73 by the mdm2-oncoprotein. Oncogene 18:2101–2106

    Article  CAS  PubMed  Google Scholar 

  44. Urist M, Tanaka T, Poyurovsky MV, Prives C (2004) p73 induction after DNA damage is regulated by checkpoint kinases Chk1 and Chk2. Genes Dev 18:3041–3054

    Article  CAS  PubMed  Google Scholar 

  45. Coates PJ (2006) Regulating p73 isoforms in human tumours. J Pathol 210:385–389

    Article  CAS  PubMed  Google Scholar 

  46. Melino G, De Laurenzi V, Vousden KH (2002) p73: friend or foe in tumorigenesis. Nat Rev Cancer 2:605–615

    Article  CAS  PubMed  Google Scholar 

  47. Bracken AP, Ciro M, Cocito A, Helin K (2004) E2F target genes: unraveling the biology. Trends Biochem Sci 29:409–417

    Article  CAS  PubMed  Google Scholar 

  48. Oberst A, Rossi M, Salomoni P, Pandolfi PP, Oren M, Melino G, Bernassola F (2005) Regulation of the p73 Protein stability and degradation. Biochem Biophys Res Commun 331:707–712

    Article  CAS  PubMed  Google Scholar 

  49. Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L et al (2003) Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat Cell Biol 5:552–558

    Article  CAS  PubMed  Google Scholar 

  50. Tsantoulis PK, Gorgoulis VG (2005) Involvement of E2F transcription factor family in cancer. Eur J Cancer 41:2403–2414

    Article  CAS  PubMed  Google Scholar 

  51. Fortin A, MacLaurin JG, Arbour N, Cregan SP, Kushwaha N, Callaghan SM, Park DS, Albert PR, Slack RS (2004) The proapoptotic gene SIVA is a direct transcriptional target for the tumor suppressor p53 and E2F1. J Biol Chem 279:28706–28714

    Article  CAS  PubMed  Google Scholar 

  52. Giovanni A, Keramaris E, Morris EJ, Hou ST, O’Hare M, Dyson N, Robertson GS, Slack RS, Park DS (2000) E2F1 mediates death of β-amyloid-treated cortical neurons in a manner independent of p53 and dependent on Bax and caspase 3. J Biol Chem 275:11553–11560

    Article  CAS  PubMed  Google Scholar 

  53. Okuno K, Yasutomi M, Nishimura N, Arakawa T, Shiomi M, Hida J, Ueda K, Minami K (2001) Gene expression analysis in colorectal cancer using practical DNA array filter. Dis Colon Rectum 44:295–299

    Article  CAS  PubMed  Google Scholar 

  54. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L (2003) PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci USA 100:1931–1936

    Article  CAS  PubMed  Google Scholar 

  55. Melino G, Bernassola F, Ranalli M, Yee K, Zong WX, Corazzari M, Knight RA, Green DR, Thompson C, Vousden KH (2004) p73 Induces Apoptosis via PUMA Transactivation and Bax Mitochondrial Translocation. J Biol Chem 279:8076–8083

    Article  CAS  PubMed  Google Scholar 

  56. Qiu W, Carson-Walter EB, Liu H, Epperly M, Greenbergr JS, Zambetti GP, Zhang L, Yu J (2008) PUMA regulates intestinal progenitor cell radio-sensitivity and gastrointestinal syndrome. Cell Stem Cell 2:576–583

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This publication was made possible by Grant Number DK-16505 from the National Institute of Diabetes and Digestive and Kidney Disease (NIDDK). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh M. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ray, R.M., Bhattacharya, S. & Johnson, L.R. Mdm2 inhibition induces apoptosis in p53 deficient human colon cancer cells by activating p73- and E2F1-mediated expression of PUMA and Siva-1. Apoptosis 16, 35–44 (2011). https://doi.org/10.1007/s10495-010-0538-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0538-0

Keywords

Navigation