Skip to main content
Log in

Production of a self-activating CBM-factor X fusion protein in a stable transformed Sf9 insect cell line using high cell density perfusion culture

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Factor Xa is a serine protease, whose high selectivity can be used to cleave protein tags from recombinant proteins. A fusion protein comprised of a self-activating form of factor X linked to a cellulose-binding module, saCBMFX, was produced in a stable transformed Sf9 insect cell line. The activity of the insect cell produced saCBMFX was higher than the equivalent mammalian cell produced material. A 1.5 l batch fermentation reached a maximum cell concentration of 1.6 × 107 cells ml−1 and a final saCBMFX concentration of 4 mg l−1. The production of saCBMFX by this cell line was also analyzed in a 1.5 l perfusion system using an ultrasonic filter as a cell-retention device for flow rates up to 3.5 l day−1. The cell-retention efficiency of an air backflush mode of acoustic filter operation was greater than 95% and eliminated the need to pump the relatively shear sensitive insect cells. In the perfusion system over 4 × 107 Sf9 cells ml−1 were obtained with a viability greater than 80%. With a doubling of viable cell concentration from 1.5 to 3 × 107 cells ml−1 the saCBMFX production rate was doubled to 6 mg l−1 day−1. The saCBMFX volumetric productivity of the perfusion system was higher than the batch fermentations (0.6 mg l−1 day−1) by an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assouline Z., Shen H., Kilburn D.G. and Warren R.A. 1993. Production and properties of a factor X-cellulose-binding domain fusion protein. Protein Eng. 6: 787–792.

    PubMed  Google Scholar 

  • Chisti Y. 2001. Hydrodynamic damage to animal cells. Crit. Rev. Biotechnol. 21: 67–110.

    Article  PubMed  Google Scholar 

  • Chu L. and Robinson D.K. 2001. Industrial choices for protein production by large-scale cell culture. Curr. Opin. Biotechnol. 12: 180–187.

    Article  PubMed  Google Scholar 

  • Cook B.C., Rudolph A.E., Kurumbail R.G., Porche-Sorbet R. and Miletich J.P. 2000. Directed glycosylation of human coagulation factor X at residue 333. Insight into factor Va-dependent prothrombin catalysis. J. Biol. Chem. 275: 38774–38779.

    Article  PubMed  Google Scholar 

  • Di Scipio R.G., Hermodson M.A., Yates S.G. and Davie E.W. 1977. A comparison of human prothrombin, factor IX (christmas factor), factor X (stuart factor) and protein S. Biochemistry 16: 698–706.

    Article  PubMed  Google Scholar 

  • Fann C.H., Guarna M.M., Kilburn D.G. and Piret J.M. 1999. Relationship between recombinant activated protein C secretion rates and mRNA levels in baby hamster kidney cells. Biotechnol. Bioeng. 63: 464–472.

    Article  PubMed  Google Scholar 

  • Garber K. 2001. Biotech industry faces new bottleneck. Nat. Biotechnol. 19: 184–185.

    Article  PubMed  Google Scholar 

  • Gorenflo V.M., Angepat S., Bowen B.D. and Piret J.M. 2003. Optimization of an acoustic cell filter with a novel air-backflush system. Biotechnol. Prog. 19: 30–36.

    Article  PubMed  Google Scholar 

  • Guarna M.M., Cote H.C., Kwan E.M., Rintoul G.L., Meyhack B., Heim J., MacGillivray R.T., Warren R.A. and Kilburn D.G. 2000. Factor X fusion proteins: Improved production and use in the release in vitro of biologically active hirudin from an inactive alpha-factor-hirudin fusion protein. Protein Expr. Purif. 20: 133–141.

    Article  PubMed  Google Scholar 

  • Hegedus D.D., Pfeifer T.A., Hendry J., Theilmann D.A. and Grigliatti T.A. 1998. A series of broad host range shuttle vectors for constitutive and inducible expression of heterologous proteins in insect cell lines. Gene 207: 241–249.

    Article  PubMed  Google Scholar 

  • Hegedus D.D., Pfeifer T.A., Theilmann D.A., Kennard M.L., Gabathuler R., Jefferies W.A. and Grigliatti T.A. 1999. Differences in the expression and localization of human melanotransferrin in lepidopteran and dipteran insect cell lines. Protein Expr. Purif. 15: 296–307.

    Article  PubMed  Google Scholar 

  • Himmelspach M., Pfleiderer M., Fischer B.E., Plaimauer B., Antoine G., Falkner F.G., Dorner F. and Schlokat U. 2000. Recombinant human factor X: High yield expression and the role of furin in proteolytic maturation in vivo and in vitro. Thromb. Res. 97: 51–67.

    Article  PubMed  Google Scholar 

  • Inoue K. and Morita T. 1993. Identification of o-linked oligosaccharide chains in the activation peptides of blood coagulation factor X. The role of the carbohydrate moieties in the activation of factor X. Eur. J. Biochem. 218: 153–163.

    Article  PubMed  Google Scholar 

  • Keane J.T., Ryan D. and Gray P.P. 2003. Effect of shear stress on expression of a recombinant protein by chinese hamster ovary cells. Biotechnol. Bioeng. 81: 211–220.

    Article  PubMed  Google Scholar 

  • Kunas K.T. and Papoutsakis E.T. 1990. The protective effect of serum against hydrodynamic damage of hybridoma cells in agitated and surface-aerated bioreactors. J. Biotechnol. 15: 57–69.

    Article  PubMed  Google Scholar 

  • Kwan E., Guarna M.M., Boraston A.B., Gilkes N.R., Haynes C.A., Kilburn D.G. and Warren R.A. 2002. Self-activating factor X derivative fused to the C-terminus of a cellulose-binding module: Production and properties. Biotechnol. Bioeng. 79: 724–732.

    Article  PubMed  Google Scholar 

  • Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage t4. Nature 227: 680–685.

    PubMed  Google Scholar 

  • Leytus S.P., Chung D.W., Kisiel W., Kurachi K. and Davie E.W. 1984. Characterization of a cDNA coding for human factor X. Proc. Natl Acad. Sci. USA 81: 3699–3702.

    PubMed  Google Scholar 

  • Ma N., Koelling K.W. and Chalmers J.J. 2002. Fabrication and use of a transient contractional flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic forces. Biotechnol. Bioeng. 80: 428–437.

    Article  PubMed  Google Scholar 

  • McQueen A. and Bailey J.E. 1989. Influence of serum level, cell-line, flow type and viscosity on flow-induced lysis of suspended mammalian-cells. Biotechnol. Lett. 11: 531–536.

    Article  Google Scholar 

  • Merten O.-W. 2000. Constructive improvement of the ultrasonic separation device ADI 1015. Cytotechnology 34: 175–179.

    Article  Google Scholar 

  • Messier T.L., Pittman D.D., Long G.L., Kaufman R.J. and Church W.R. 1991. Cloning and expression in COS-1 cells of a full-length cDNA encoding human coagulation factor X. Gene 99: 291–294.

    Article  PubMed  Google Scholar 

  • Pfeifer T.A., Hegedus D.D., Grigliatti T.A. and Theilmann D.A. 1997. Baculovirus immediate-early promoter-mediated expression of the zeocin resistance gene for use as a dominant selectable marker in dipteran and lepidopteran insect cell lines. Gene 188: 183–190.

    Article  PubMed  Google Scholar 

  • Pfeifer T.A., Guarna M.M., Kwan E.M., Lesnicki G., Theilmann D.A., Grigliatti T.A. and Kilburn D.G. 2001. Expression analysis of a modified factor X in stably transformed insect cell lines. Protein Expr. Purif. 23: 233–241.

    Article  PubMed  Google Scholar 

  • Rezaie A.R., Neuenschwander P.F., Morrissey J.H. and Esmon C.T. 1993. Analysis of the functions of the first epidermal growth factor-like domain of factor X. J. Biol. Chem. 268: 8176–8180.

    PubMed  Google Scholar 

  • Rudolph A.E., Mullane M.P., Porche-Sorbet R. and ‘Miletich J.P. 1997. Expression, purification and characterization of recombinant human factor X. Protein Expr. Purif. 10: 373–378.

    Article  PubMed  Google Scholar 

  • Stanton C. and Wallin R. 1992. Processing and trafficking of clotting factor X in the secretory pathway. Effects of warfarin. Biochem. J. 284: 25–31.

    PubMed  Google Scholar 

  • Stanton C., Ross R.P., Hutson S. and Wallin R. 1996. Processing and expression of rat and human clotting factor-X-encoding cDNAs. Gene 169: 269–273.

    Article  PubMed  Google Scholar 

  • Trampler F., Sonderhoff S.A., Pui P.W., Kilburn D.G. and Piret J.M. 1994. Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/Technology (N Y) 12: 281–284.

    Article  Google Scholar 

  • Wallin R. and Martin L.F. 1988. Early processing of prothrombin and factor X by the vitamin K-dependent carboxylase. J. Biol. Chem. 263: 9994–10001.

    PubMed  Google Scholar 

  • Zhang J., Collins A., Chen M., Knyazev I. and Gentz R. 1998. High-density perfusion culture of insect cells with a biosep ultrasonic filter. Biotechnol. Bioeng. 59: 351–359.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker M. Gorenflo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorenflo, V.M., Pfeifer, T.A., Lesnicki, G. et al. Production of a self-activating CBM-factor X fusion protein in a stable transformed Sf9 insect cell line using high cell density perfusion culture. Cytotechnology 44, 93–102 (2004). https://doi.org/10.1007/s10616-005-0703-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-005-0703-4

Key words

Navigation