Skip to main content
Log in

Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, we study the variance and volatility swaps pricing problem under the framework of double Heston jump diffusion model with approximative fractional stochastic volatility. The pricing formulas of discretely-sampled variance and volatility swaps are obtained by deriving the characteristic function and solving the governing partial integro-differential equations(PIDEs). We also obtain the limits of discretely-sampled variance and volatility swaps pricing formulas, which are the pricing formulas of continuously-sampled variance and volatility swaps. Finally, the effectiveness of the pricing formula is illustrated by comparing with some existing works, and the influence of approximation factor and Hurst parameter variation on the prices of swaps are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alòs, E., Mazet, O., & Nualart, D. (2000). Stochastic calculus with respect to fractional Brownian motion with Hurst parameter lesser than 12. Stochastic Processes and their Applications, 86(1), 121–139.

    Article  Google Scholar 

  • Barndorff-Nielsen, O. E., & Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps. Journal of Financial Econometrics, 2(1), 1–37.

    Article  Google Scholar 

  • Broadie, M., & Jain, A. (2008). The effect of jumps and discrete sampling on volatility and variance swaps. International Journal of Theoretical and Applied Finance, 11(08), 761–797.

    Article  Google Scholar 

  • Carr, P., Friz, W., Javaheri, A., et al. (2008). Robust replication of volatility derivatives. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.1108429

    Article  Google Scholar 

  • Cheridito, P. (2001). Mixed fractional brownian motion. Bernoulli, 7, 913–934. https://doi.org/10.2307/3318626.

    Article  Google Scholar 

  • Christoffersen, P., Heston, S., & Jacobs, K. (2009). The shape and term structure of the index option smirk: why multifactor stochastic volatility models work so well. Management Science, 55(12), 1914–1932.

    Article  Google Scholar 

  • Comte, F., & Renault, E. (1998). Long memory in continuous-time stochastic volatility models. Mathematical finance, 8(4), 291–323.

    Article  Google Scholar 

  • El Euch, O., & Rosenbaum, M. (2019). The characteristic function of rough Heston models. Mathematical Finance, 29(1), 3–38.

    Article  Google Scholar 

  • Elliott, R. J., Kuen Siu, T., & Chan, L. (2007). Pricing volatility swaps under Heston’s stochastic volatility model with regime switching. Applied Mathematical Finance, 14(1), 41–62.

    Article  Google Scholar 

  • Fallah, S., & Mehrdoust, F. (2019). On the existence and uniqueness of the solution to the double Heston model equation and valuing lookback option. Journal of Computational and Applied Mathematics, 350, 412–422.

    Article  Google Scholar 

  • Grasselli, M. (2017). The 4/2 stochastic volatility model: a unified approach for the Heston and the 3/2 model. Mathematical Finance, 27(4), 1013–1034.

    Article  Google Scholar 

  • Grünbichler, A., & Longstaff, F. A. (1996). Valuing futures and options on volatility. Journal of Banking & Finance, 20(6), 985–1001.

    Article  Google Scholar 

  • He, X. J., & Chen, W. (2021). A closed-form pricing formula for European options under a new stochastic volatility model with a stochastic long-term mean. Mathematics and Financial Economics, 15(2), 381–396.

    Article  Google Scholar 

  • He, X. J., & Chen, W. T. (2022). Pricing foreign exchange options under a hybrid Heston–Cox–Ingersoll–Ross model with regime switching. IMA Journal of Management Mathematics, 33(2), 255–272.

    Article  Google Scholar 

  • He, X. J., & Lin, S. (2021). An analytical approximation formula for barrier option prices under the Heston model. Computational Economics. https://doi.org/10.1007/s10614-021-10186-7

    Article  Google Scholar 

  • He, X. J., & Lin, S. (2021). A fractional Black–Scholes model with stochastic volatility and European option pricing. Expert Systems with Applications, 178, 114–983.

    Article  Google Scholar 

  • Heston, S. L., & Nandi, S. (2000). Derivatives on volatility: some simple solutions based on observables. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.249173

    Article  Google Scholar 

  • He, X. J., & Zhu, S. P. (2018). A series-form solution for pricing variance and volatility swaps with stochastic volatility and stochastic interest rate. Computers & Mathematics with Applications, 76(9), 2223–2234.

    Article  Google Scholar 

  • Intarasit, A., & Sattayatham, P. (2010). A geometric Brownian motion model with compound Poisson process and fractional stochastic volatility. Advances and applications in statistics, 16(1), 25–47.

    Google Scholar 

  • Issaka, A. (2020). Variance swaps, volatility swaps, hedging and bounds under multi-factor Heston stochastic volatility model. Stochastic Analysis and Applications, 38(5), 856–874.

    Article  Google Scholar 

  • Javaheri, A., Wilmott, P., & Haug, E. G. (2004). Garch and volatility swaps. Quantitative Finance, 4(5), 589–595.

    Article  Google Scholar 

  • Kang, J. H., Yang, B. Z., & Huang, N. J. (2019). Pricing of FX options in the MPT/CIR jump-diffusion model with approximative fractional stochastic volatility. Statistical Mechanics and Its Applications, 532, 121–871.

    Article  Google Scholar 

  • Kim, S. W., & Kim, J. H. (2019). Variance swaps with double exponential Ornstein–Uhlenbeck stochastic volatility. The North American Journal of Economics and Finance, 48, 149–169.

    Article  Google Scholar 

  • Kim, S. W., & Kim, J. H. (2020). Volatility and variance swaps and options in the fractional SABR model. The European Journal of Finance, 26(17), 1725–1745.

    Article  Google Scholar 

  • Lian, G. H. (2010). Pricing volatility derivatives with stochastic volatility (Ph.D thesis, University of Wollongong).

  • Little, T., & Pant, V. (2002). A finite difference method for the valuation of variance swaps. World Scientific.

  • Li, Z., Zhang, W. G., Liu, Y. J., et al. (2019). Pricing discrete barrier options under jump-diffusion model with liquidity risk. International Review of Economics & Finance, 59, 347–368.

    Article  Google Scholar 

  • Mandelbrot, B. B., & Van Ness, J. W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4), 422–437.

    Article  Google Scholar 

  • Mrázek, M., Pospíšil, J., & Sobotka, T. (2016). On calibration of stochastic and fractional stochastic volatility models. European Journal of Operational Research, 254(3), 1036–1046.

    Article  Google Scholar 

  • Recchioni, M. C., Iori, G., Tedeschi, G., et al. (2021). The complete Gaussian kernel in the multi-factor Heston model: option pricing and implied volatility applications. European Journal of Operational Research, 293(1), 336–360.

    Article  Google Scholar 

  • Rogers, L. C. G. (1997). Arbitrage with fractional Brownian motion. Mathematical Finance, 7(1), 95–105.

    Article  Google Scholar 

  • Sattayatham, P., & Intarasit, A. (2011). An approximate formula of European option for fractional stochastic volatility jump-diffusion model. Journal of Mathematics and Statistics, 7(3), 230–238.

    Article  Google Scholar 

  • Schürger, K. (2002). Laplace transforms and suprema of stochastic processes. In Advances in finance and stochastics. Springer

  • Sepp, A. (2008). Pricing options on realized variance in the Heston model with jumps in returns and volatility. Journal of Computational Finance, 11(4), 33–70.

    Article  Google Scholar 

  • Sun, Y. F. (2015). Efficient pricing and hedging under the double Heston stochastic volatility jump-diffusion model. International Journal of Computer Mathematics, 92(12), 2551–2574.

    Article  Google Scholar 

  • Swishchuk, A. (2004). Modeling of variance and volatility swaps for financial markets with stochastic volatilities. Wilmott Magazine, 2, 64–72.

    Google Scholar 

  • Thao, T. H. (2006). An approximate approach to fractional analysis for finance. Nonlinear Analysis: Real World Applications, 7(1), 124–132.

    Google Scholar 

  • Yuen, C. H., Zheng, W. D., & Kwok, Y. K. (2015). Pricing exotic discrete variance swaps under the 3/2-stochastic volatility models. Applied Mathematical Finance, 22(5), 421–449.

    Article  Google Scholar 

  • Zheng, W. D., & Kwok, Y. K. (2014). Closed form pricing formulas for discretely sampled generalized variance swaps. Mathematical Finance, 24(4), 855–881.

    Article  Google Scholar 

  • Zhu, S. P., & Lian, G. H. (2011). A closed-form exact solution for pricing variance swaps with stochastic volatility. Mathematical Finance, 21(2), 233–256.

    Article  Google Scholar 

  • Zhu, S. P., & Lian, G. H. (2012). On the valuation of variance swaps with stochastic volatility. Applied Mathematics and Computation, 219(4), 1654–1669.

    Article  Google Scholar 

Download references

Funding

There was no funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Wang.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

We know that \(\int _{0}^{+\infty }\frac{sinx}{x}dx=\frac{\pi }{2}\), then we have

$$\begin{aligned} \int _{0}^{+\infty }\frac{sinax}{x}dx= \left\{ \begin{array}{lr} \frac{\pi }{2}, &{} a>0 \\ 0, &{}a=0\\ -\frac{\pi }{2}. &{} a<0 \end{array} \right. \end{aligned}$$
(A.1)

Next, we express Eq. (A.1) in terms of an indicator function sgn(a) as follows

$$\begin{aligned} sgn(a)=\frac{2}{\pi }\int _{0}^{+\infty }\frac{sinax}{x}dx=\frac{2}{\pi }\int _{0}^{+\infty }RE\left[ \frac{e^{iax}}{ix}\right] dx. \end{aligned}$$
(A.2)

Then, we have \(I_{a>0}=\frac{1}{2}+\frac{1}{\pi }\int _{0}^{+\infty }RE\left[ \frac{e^{iax}}{ix}\right] dx\), where \(I= \left\{ \begin{array}{lr} 1, &{}a>0\\ 0. &{}a\le 0 \end{array} \right. \).

$$\begin{aligned} P(X>0)=E[I_{X>0}]=\frac{1}{2}+\frac{1}{\pi }\int _{0}^{+\infty }RE\left[ \frac{E[e^{i\phi X}]}{i\phi }\right] d\phi . \end{aligned}$$

which \(f(\phi ):=E[e^{i\phi X}]\). Furthermore, we know that \(P(X>0)=\int _{0}^{+\infty }p(x)dx\). Thus, one has

$$\begin{aligned} \int _{0}^{+\infty }p(x)dx=\frac{1}{2}+\frac{1}{\pi }\int _{0}^{+\infty }RE\left[ \frac{f(\phi )}{i\phi }\right] d\phi . \end{aligned}$$
(A.3)

This completes the proof.

Appendix B

We now present a brief Proof of Theorem 3. Similar to Eq. (36), one has

$$\begin{aligned} K^1_{cvol}&=E[RV^1_{cvol}\vert S_0,v_0,\hat{v}_0]\\&=E\left[ \sqrt{\frac{1}{T}\left[ \int _{0}^{T}(v_t+\hat{v}_t)dt+\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}\right] }\Bigg \vert S_0,v_0,\hat{v}_0\right] \times 100. \end{aligned}$$

From Schürger (2002), the square root function can be expressed as follows

$$\begin{aligned} \sqrt{x}=\frac{1}{2\sqrt{\pi }}\int _{0}^{+\infty }\frac{1-e^{-sx}}{s^{\frac{3}{2}}}ds. \end{aligned}$$
(B.1)

Taking the expectations on both sides of Eq. (B.1) with \(x=\frac{1}{T}\left[ \int _{0}^{T}(v_t+\hat{v}_t)dt+\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}\right] \), which can be derived as

$$\begin{aligned} K^1_{cvol}=\frac{100}{2\sqrt{\pi }}\int _{0}^{+\infty }\frac{1-E\left[ e^{-s\frac{1}{T}\left[ \int _{0}^{T}(v_t+\hat{v}_t)dt+\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}\right] }\bigg \vert S_0,v_0,\hat{v}_0\right] }{s^{\frac{3}{2}}}ds \end{aligned}$$
(B.2)

where

$$\begin{aligned}&E\left[ e^{-s\frac{1}{T}\left[ \int _{0}^{T}(v_t+\hat{v}_t)dt+\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}\right] }\bigg \vert S_0,v_0,\hat{v}_0\right] \\&\quad =E\left[ e^{-\frac{s}{T}\int _{0}^{T}(v_t+\hat{v}_t)dt}\bigg \vert v_0,\hat{v}_0\right] +E\left[ e^{-\frac{s}{T}\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}}\bigg \vert S_0,v_0,\hat{v}_0\right] . \end{aligned}$$

Firstly, we let \(P(t,v,\hat{v})=E\left[ e^{-\frac{s}{T}\int _{t}^{T}(v_t+\hat{v}_t)dt}\bigg \vert v_t,\hat{v}_t\right] ,\ t \in [0,T]\). By using the Feynman–Kac theorem, the PDE governing P can be derived as

$$\begin{aligned} \frac{\partial P}{\partial \tau }= & \left[ \kappa (\theta -v)+\sigma _v\sqrt{v}\left( H-\frac{1}{2}\right) \psi \right] \frac{\partial P}{\partial v}+\frac{1}{2}\sigma _v^2\varepsilon ^{2H-1}V\frac{\partial ^2 P}{\partial v^2}\nonumber \\{} & {} +\,\hat{\kappa }(\hat{\theta }-\hat{v})\frac{\partial P}{\partial \hat{v}}+\frac{1}{2}\sigma _{\hat{v}}^2\hat{v}\frac{\partial ^2 P}{\partial \hat{v}^2} \end{aligned}$$
(B.3)

where \(\tau =T-t\) and \(P(\tau ,v,\hat{v})\big \vert _{\tau =0}=1\). Then, we can assume that the solution of Eq. (B.3) has the following form

$$\begin{aligned} P(\tau ,v,\hat{v})=e^{A(s,\tau )+B(s,\tau )v_t+C(s,\tau )\hat{v}_t} \end{aligned}$$

Substituting P into Eq. (B.3), since \(\psi _t=\int _{0}^{t}(t-s+\varepsilon )^{H-\frac{3}{2}}dW_s^{\psi }\) is a martingle, \(\psi _0=E[\psi _t]=0\). Then, the PDE is reduced to three ODEs

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{\partial A}{\partial \tau }=\kappa \theta B+\hat{\kappa }\hat{\theta }C\\ \frac{\partial B}{\partial \tau }=-\kappa B+\frac{1}{2}\sigma _v^2\varepsilon ^{2H-1}B^2-\frac{s}{T}\\ \frac{\partial C}{\partial \tau }=-\hat{\kappa }C+\frac{1}{2}\sigma _{\hat{v}}^2C^2-\frac{s}{T}, \end{array} \right. \end{aligned}$$
(B.4)

with \(A(s,0)=B(s,0)=C(s,0)=0\).

Clearly, the ODE governing \(B(s,\tau )\) and \(C(s,\tau )\) are Riccati equations with constant coefficients, which have the following solution form

$$\begin{aligned} B(s,T)=\frac{\kappa +d_1}{\sigma ^2_v\varepsilon ^{2H-1}}\frac{1-e^{d_1 \tau }}{1-g_1e^{d_1 \tau }}, \quad C(s,T)=\frac{\hat{\kappa }+\hat{d}_1}{\sigma ^2_{\hat{v}}}\frac{1-e^{\hat{d}_1 \tau }}{1-\hat{g}_1e^{\hat{d}_1 \tau }} \end{aligned}$$

where

$$\begin{aligned} d_1=\sqrt{\kappa ^2+2\sigma ^2_v\varepsilon ^{2H-1}\frac{s}{T}},\quad \hat{d}_1=\sqrt{\hat{\kappa }^2+2\sigma ^2_{\hat{v}}\frac{s}{T}},\quad g_1=\frac{-\kappa -d_1}{\kappa +d_1},\quad \hat{g}_1=\frac{\hat{\kappa }-\hat{d}_1}{\hat{\kappa }+\hat{d}_1}. \end{aligned}$$

Moreover, we can arrive at a closed form solution of \(A(s,\tau )\) by integrating both sides of the first ODE

$$\begin{aligned} A(s,T)&=\frac{\kappa \theta (\kappa +d_1)}{\sigma ^2_v\varepsilon ^{2H-1}}\left[ \tau -\frac{g_1-1}{d_1g_1}\ln (1-g_1e^{d_1\tau })\right] \\&\quad +\,\frac{\hat{\kappa }\hat{\theta }(\hat{\kappa }+\hat{d}_1)}{\sigma ^2_{\hat{v}}}\left[ \tau -\frac{\hat{g}_1-1}{\hat{d}_1\hat{g}_1}\ln (1-\hat{g}_1e^{\hat{d}_1\tau })\right] . \end{aligned}$$

We know that \(E\left[ e^{-\frac{s}{T}\int _{0}^{T}(v_t+\hat{v}_t)dt}\bigg \vert v_0,\hat{v}_0\right] \) can be derived by setting \(\tau =T\),

$$\begin{aligned} E\left[ e^{-\frac{s}{T}\int _{0}^{T}(v_t+\hat{v}_t)dt}\bigg \vert v_0,\hat{v}_0\right] =e^{A(s,T)+B(s,T)v_0+C(s,T)\hat{v}_0}. \end{aligned}$$

Then, we calculate \(E\left[ e^{-\frac{s}{T}\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}}\bigg \vert S_0,v_0,\hat{v}_0\right] \). Using the property of expectation, \(E\left[ e^{-\frac{s}{T}\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}}\bigg \vert S_0,v_0,\hat{v}_0\right] \) can be written as

$$\begin{aligned} E\left[ e^{-\frac{s}{T}\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}}\bigg \vert S_0,v_0,\hat{v}_0\right] =E\left[ E\left[ e^{-\frac{s}{T}\sum _{i=1}^{n}{(e^{Y_i}-1)^2}}\bigg \vert N_T=n\right] \bigg \vert S_0,v_0,\hat{v}_0\right] . \end{aligned}$$

Let \(Z=e^Y-1\), the density function of Z is given by

$$\begin{aligned} f_Z(z)=\left\{ \begin{array}{lr} 0, &{}z\le 1 \\ q\eta _2(1+z)^{\eta _2-1}, &{} -1< z \le 0\\ p\eta _1(1+z)^{-\eta _1-1}. &{} z>0 \end{array} \right. \end{aligned}$$

The inner expectation can be computed as

$$\begin{aligned} E\left[ e^{-\frac{s}{T}\sum _{i=1}^{n}{(e^{Y_i}-1)^2}}\bigg \vert N_T=n\right] =(D(s,T))^n \end{aligned}$$

where \(D(s,T)=q\eta _2\int _{-1}^{0}e^{-\frac{s}{T}z^2}(1+z)^{\eta _2-1}dz+p\eta _1\int _{0}^{+\infty }e^{-\frac{s}{T}z^2}(1+z)^{-\eta _1-1}dz\).

We can compute the outer expectation as follows

$$\begin{aligned} E\left[ e^{-\frac{s}{T}\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}}\bigg \vert S_0,v_0,\hat{v}_0\right] =\sum _{n=0}^{+\infty }\frac{e^{-\lambda T}(\lambda T)^n}{n!}(D(s,T))^n. \end{aligned}$$
(B.5)

Simplifying the infinite sum gives

$$\begin{aligned} E\left[ e^{-\frac{s}{T}\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}}\bigg \vert S_0,v_0,\hat{v}_0\right] =e^{\lambda T(D(s,T)-1)}. \end{aligned}$$
(B.6)

Summarizing above discussions, we have the results as follows

$$\begin{aligned}{} & {} E\left[ e^{-s\frac{1}{T}\left[ \int _{0}^{T}(v_t+\hat{v}_t)dt+\sum _{i=1}^{N_T}{(e^{Y_i}-1)^2}\right] }\bigg \vert S_0,v_0,\hat{v}_0\right] \nonumber \\{} & {} \quad =e^{A(s,T)+B(s,T)v_0+C(s,T)\hat{v}_0+\lambda T(D(s,T)-1)}. \end{aligned}$$
(B.7)

Thus, \(K^1_{cvol}\) is obtained.

Appendix C

If the parameters \(\lambda =0\) and \(H=\frac{1}{2}\), our model degenerates as follows

$$\begin{aligned} \left\{ \begin{array}{ll} \frac{dS_t}{S_t}=rdt+\sqrt{v_{1,t}}dW_t^S+\sqrt{v_{2,t}}d\hat{W}_t^S\\ dv_t=k1(\theta _1-v_{1,t})dt+\sigma _1\sqrt{v_{1,t}}dW_t\\ d\hat{v}_t=k_2(\theta _2-v_{2,t})dt+\sigma _2\sqrt{v_{2,t}}d\hat{W}_t^v, \end{array} \right. \end{aligned}$$
(C.1)

According to the Recchioni et al. (2021), the marginal probability density of the log-price variable conditioned on \(v=(v_{1,t_{i-1}},v_{2,t_{i-1}})\) is given by

$$\begin{aligned} M(x_{t_{i-1}},v,t_{i-1},x_{t_{i}},t_{i})= & \frac{1}{2\pi }\int _{-\infty }^{+\infty }e^{\iota m\left[ (t_{i}-t_{i-1})-r(t_{i}-t_{i-1})+\frac{1}{2}\Gamma _0(t_{i-1},t_{i})\right] -\frac{1}{2}\Gamma _0(t_{i-1},t_{i})m^2}\nonumber \\{} & {} \times \,e^{\sum _{j=1}^{2}\int _{t_{i-1}}^{t_{i}}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})\left[ \frac{\sigma _j^2}{2}B_j^2(m,s,t_{i})+\iota m\rho _j\sigma _jB_j(m,s,t_{i})\right] ds}dm \end{aligned}$$
(C.2)

where \(E(v_{j,t_{i}}\vert {\mathcal {F}}_{t_{i-1}})=v_{j,t_{i-1}}e^{-k_j(t_{i}-t_{i-1})}+\sigma _j(1-e^{-k_j(t_{i}-t_{i-1})})\), \(x_{t_i}=\ln S_{t_i}\) and \(\iota \) is an imaginary unit. Here, \(B_j\) is given by

$$\begin{aligned} B_j(m,t_{i-1},t_{i})=\frac{1}{2}(m^2-\iota m)\frac{1-e^{-2\zeta _j(t_{i}-t_{i-1})}}{(\zeta _j+\xi _j)+(\zeta _j-\xi _j)e^{-2\zeta _j(t_{i}-t_{i-1})}} \end{aligned}$$
(C.3)

where \(\zeta _j\) and \(\xi _j\) are the following quantities

$$\begin{aligned} \zeta _j(m)=\frac{1}{2}(4\xi _j^2+\sigma _j^2(m^2-\iota m))^\frac{1}{2}),\quad \xi _j(m)=1/2(\iota m\rho _j\sigma _j+k_j). \end{aligned}$$
(C.4)

And \(\Gamma _0(t_{i},t_{i-1})\) is given by

$$\begin{aligned} \Gamma _0(t_{i},t_{i-1})=\sum _{j=1}^{2}\int _{t_{i-1}}^{t_i}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})ds. \end{aligned}$$
(C.5)

Then, we calculate the fair strike price of variance swap through the conditional marginal probability density function

$$\begin{aligned} K_{var}= \; \frac{AF}{N}\sum _{i=1}^{N}E\left[ \left( \frac{S_{t_i}-S_{t_{i-1}}}{S_{t_{i-1}}}\right) ^2\Bigg \vert {\mathcal {F}}_0\right] \times 100^2\nonumber \\= \; \frac{AF}{N}\sum _{i=1}^{N}E\left[ \left( e^{x_{t_i}-x_{t_{i-1}}}-1\right) ^2\Bigg \vert {\mathcal {F}}_0\right] \times 100^2\nonumber \\= \; \frac{AF}{N}\sum _{i=1}^{N}E\left[ E\left[ \left( e^{x_{t_i}-x_{t_{i-1}}}-1\right) ^2\Bigg \vert {\mathcal {F}}_{t_{i-1}}\right] \Bigg \vert {\mathcal {F}}_0\right] \times 100^2\nonumber \\= \; \frac{AF}{N}\sum _{i=1}^{N}E\left[ E\left[ \left( e^{2(x_{t_i}-x_{t_{i-1}})}-2e^{(x_{t_i}-x_{t_{i-1}})}+1\right) \Bigg \vert {\mathcal {F}}_{t_{i-1}}\right] \Bigg \vert {\mathcal {F}}_0\right] \times 100^2 \end{aligned}$$
(C.6)

Further, we calculate Eq. (C.6) in two steps: (\(\text {i}\)) \(E[ E[e^{(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]\); (\(\text {ii}\)) \(E[ E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]\).

  1. (i)

    \(E[ E[e^{(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]\)

    $$\begin{aligned}{} & {} E[e^{(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}]\nonumber \\{} & {} \quad =e^{-x_{t_{i-1}}}\int _{-\infty }^{+\infty }e^{x_{t_i}}M(x_{t_{i-1}},v,t_{i-1},x_{t_{i}},t_{i})dx_{t_i}\nonumber \\{} & {} \quad =\int _{-\infty }^{+\infty }\frac{1}{2\pi }\int _{-\infty }^{+\infty }e^{\iota (m-\iota ) (x_{t_i}-x_{t_{i-1}})}dx_{t_i}e^{\iota m[-r(t_{i}-t_{i-1})+\frac{1}{2}\Gamma _0(t_{i-1},t_{i})]-\frac{1}{2}\Gamma _0(t_{i-1},t_{i})m^2}\nonumber \\{} & {} \qquad \times e^{\sum _{j=1}^{2}\int _{t_{i-1}}^{t_{i}}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})[\frac{\sigma _j^2}{2}B_j^2(m,s,t_{i})+\iota m\rho _j\sigma _jB_j(m,s,t_{i})]ds}dm\nonumber \\{} & {} \quad =\int _{-\infty }^{+\infty }\delta (m-\iota )e^{\iota m[-r(t_{i}-t_{i-1})+\frac{1}{2}\Gamma _0(t_{i-1},t_{i})]-\frac{1}{2}\Gamma _0(t_{i-1},t_{i})m^2}\nonumber \\{} & {} \qquad \times e^{\sum _{j=1}^{2}\int _{t_{i-1}}^{t_{i}}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})[\frac{\sigma _j^2}{2}B_j^2(m,s,t_{i})+\iota m\rho _j\sigma _jB_j(m,s,t_{i})]ds}dm\nonumber \\{} & {} \quad =e^{r(t_{i}-t_{i-1})} \end{aligned}$$
    (C.7)

    Thus, \(E[ E[e^{(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]=E[e^{r(t_{i}-t_{i-1})}\vert {\mathcal {F}}_0]=e^{r(t_{i}-t_{i-1})}\).

  2. (ii)

    \(E[ E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]\). Similar to \(E[e^{(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}]\), the \(E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}]\) can be expressed as

    $$\begin{aligned} E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}]= & \int _{-\infty }^{+\infty }\delta (m-2\iota )e^{\iota m[-r(t_{i}-t_{i-1})+\frac{1}{2}\Gamma _0(t_{i-1},t_{i})]-\frac{1}{2}\Gamma _0(t_{i-1},t_{i})m^2}\nonumber \\{} & {} \times \,e^{\sum _{j=1}^{2}\int _{t_{i-1}}^{t_{i}}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})[\frac{\sigma _j^2}{2}B_j^2(m,s,t_{i})+\iota m\rho _j\sigma _jB_j(m,s,t_{i})]ds}dm\nonumber \\= & e^{2r(t_{i}-t_{i-1})}e^{\sum _{j=1}^{2}\int _{t_{i-1}}^{t_{i}}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})[H_j(2\iota ,s,t_{i})+1]ds} \end{aligned}$$
    (C.8)

    where \(H_j(m,s,t_{i})=\frac{\sigma _j^2}{2}B_j^2(m,s,t_{i})+\iota m\rho _j\sigma _jB_j(m,s,t_{i})\). Recchioni et al. (2021), the \(H_j(m,s,t_{i})\) is given by

    $$\begin{aligned} H_j(m,s,t_{i})= & \frac{\sigma _j^2(m^2-\iota m)^2}{2}\frac{\psi _j^2(s,t_i)}{4}+\iota m\rho _j\sigma _j\left( \frac{\psi _j(s,t_i)}{2}(m^2-\iota m)\right. \nonumber \\{} & {} \left. +\,\frac{\sigma _j\rho _j}{2k_j}f_j(s,t_i)(-\iota m^3-m^2)\right) +o(\sigma _j^2),\ \sigma _j\rightarrow 0^{+}. \end{aligned}$$
    (C.9)

    where \(\psi _j(t_{i-1},t_i)=\frac{(1-e^{-k_j(t_i-t_{i-1})})}{k_j}\) and \(f_j(t_{i-1},t_{i})=\psi _j(t_{i-1},t_i)-(t_i-t_{i-1})e^{-k_j(t_i-t_{i-1})}\). Next,

    $$\begin{aligned}{} & {} \int _{t_{i-1}}^{t_{i}}E(v_{j,s}\vert {\mathcal {F}}_{t_{i-1}})[H_j(m,s,t_{i})+1]ds\nonumber \\{} & {} \quad =\int _{t_{i-1}}^{t_{i}}[v_{j,t_{i-1}}e^{-k_j(s-t_{i-1})} +\theta _j(1-e^{-k_j(s-t_{i-1})})][H_j(m,s,t_{i})+1]ds\nonumber \\{} & {} \quad =v_{j,t_{i-1}}A_j+\theta _jC_j \end{aligned}$$
    (C.10)

    where \(A_j(m,\tau )=\int _{t_{i-1}}^{t_{i}}e^{-k_j(s-t_{i-1})}[H_j(m,s,t_{i})+1]ds\) and \(C_j(m,\tau )=\int _{t_{i-1}}^{t_{i}}(1-e^{-k_j(s-t_{i-1})})[H_j(m,s,t_{i})+1]ds\). We let \(\tau =t_{i}-t_{i-1}\), \(A_j\) can be derived as

    $$\begin{aligned} A_j(m,\tau )= & \frac{\sigma _j^2(m^2-\iota m)^2[1-e^{-2k_j\tau }]}{8k_j^2}-\frac{\sigma _j^2(m^2-\iota m)^2\tau e^{-k_j\tau }}{4k_j}\nonumber \\{} & {} +\,\frac{\iota m\rho _j\sigma _j(m^2-\iota m)}{2k_j^2}(1-e^{-k_j\tau }-k_j\tau e^{-k_j\tau })+\frac{1-e^{-k_j\tau }}{k_j}\nonumber \\{} & {} +\,\frac{\iota m(-\iota m^3-m^2)\sigma _j^2\rho _j^2}{2k_j}[\frac{1-e^{-k_j\tau }-k_j\tau e^{-k_j\tau }}{k_j^2}-\frac{e^{-k_j\tau }\tau ^2}{2}] \end{aligned}$$
    (C.11)

    The \(C_j(m,\tau )\) is then given by

    $$\begin{aligned} C_j(m,\tau )= & \frac{\sigma _j^2(m^2-\iota m)^2}{8}\left[ \frac{\tau }{k_j^2}+\frac{1-e^{-2k_j\tau }}{2k_j^3}-\frac{2(1-e^{-k_j\tau })}{k_j^3}\right] \nonumber \\{} & {} +\,\frac{\iota m(-\iota m^3-m^2)\sigma _j^2\rho _j^2}{2k_j^2}\left[ \tau -\frac{2-2e^{-k_j\tau }}{k_j}+\tau e^{-k_j\tau }\right] \nonumber \\{} & {} +\,\frac{\iota m\rho _j\sigma _j(m^2-\iota m)}{2k_j}\left[ \tau -\frac{1-e^{-k_j\tau }}{k_j}\right] +\tau -A_j \end{aligned}$$
    (C.12)

    Thus, \(E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}]=e^{2r\tau +\sum _{j=1}^{2}\theta _jC_j(2\iota ,\tau )}e^{\sum _{j=1}^{2}A_j(2\iota ,\tau )v_{j,t_{i-1}}}\). Further, \(E[ E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]\) can be expressed as

    $$\begin{aligned} E[ E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]=e^{2r\tau +\sum _{j=1}^{2}\theta _jC_j(2\iota ,\tau )}E\left[ e^{\sum _{j=1}^{2}A_j(2\iota ,\tau )v_{j,t_{i-1}}}\vert {\mathcal {F}}_0\right] \end{aligned}$$
    (C.13)

    Similar to Eq. (29), we obtain

    $$\begin{aligned} E[e^{\sum _{j=1}^{2}A_j(2\iota ,\tau )v_{j,t_{i-1}}}\vert {\mathcal {F}}_0]=e^{\hat{C}(2\iota ,t_{i-1})+\hat{D}(2\iota ,t_{i-1})v_{1,0}+\hat{E}(2\iota ,t_{i-1})v_{2,0}} \end{aligned}$$
    (C.14)

    where

    $$\begin{aligned} \hat{C}(2\iota ,t_{i-1})&=\frac{2k_1\theta _1}{\sigma _1^2}\left[ k_1 t_{i-1}+\ln \frac{2k_1}{\sigma _1^2A_1(2\iota ,\tau )+(2k_1-\sigma _1^2A_1(2\iota ,\tau ))e^{k_1 t_{i-1}}}\right] \\&\quad +\frac{2k_2\theta _2}{\sigma _2^2}\left[ k_2t_{i-1}+\ln \frac{2k_2}{\sigma _2^2A_2(2\iota ,\tau )+(2k_2-\sigma _2^2A_2(2\iota ,\tau ))e^{k_2t_{i-1}}}\right] ,\\ \hat{D}_1(2\iota ,t_{i-1})&=\frac{2k_1 A_1(2\iota ,\tau )}{\sigma _1^2A_1(2\iota ,\tau )+(2k_1-\sigma _1^2A_1(2\iota ,\tau ))e^{k_1 t_{i-1}}},\\ \hat{D}_2(2\iota ,t_{i-1})&=\frac{2k_2A_2(2\iota ,\tau )}{\sigma _2^2A_2(2\iota ,\tau )+(2k_2-\sigma _2^2A_2(2\iota ,\tau ))e^{k_2 t_{i-1}}}. \end{aligned}$$

    Finally, \(E[ E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]\) is given by

    $$\begin{aligned} E[ E[e^{2(x_{t_i}-x_{t_{i-1}})} \vert {\mathcal {F}}_{t_{i-1}}] \vert {\mathcal {F}}_0]=e^{2r\tau +\hat{C}(2\iota ,t_{i-1})+\sum _{j=1}^{2}C_j(2\iota ,t_{i-1})+\hat{D}_j(2\iota ,t_{i-1})v_{j,0}} \end{aligned}$$
    (C.15)

    Above all, the fair strike price of variance swap can be expressed as

    $$\begin{aligned} K_{var}=\frac{100^2}{T}\sum _{i=1}^{N}\left[ e^{2r\tau +\hat{C}(2\iota ,t_{i-1})+\sum _{j=1}^{2}C_j(2\iota ,\tau )+\hat{D}_j(2\iota ,t_{i-1})v_{j,0}}-2e^{r\tau }+1\right] . \end{aligned}$$
    (C.16)

    An appendix contains supplementary information that is not an essential part of the text itself but which may be helpful in providing a more comprehensive understanding of the research problem or it is information that is too cumbersome to be included in the body of the paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Guo, X. Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility. Comput Econ 63, 1543–1573 (2024). https://doi.org/10.1007/s10614-023-10374-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-023-10374-7

Keywords

Navigation