Skip to main content
Log in

Integrated Portfolio Risk Measure: Estimation and Asymptotics of Multivariate Geometric Quantiles

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Portfolio management and integrated risk management are more commonly applied toward enterprise risk management, requiring multivariate risk measures that capture the dependence among many risk factors. In this paper we propose the non-parametric estimator for multivariate value at risk (MVaR) and multivariate average value at risk (MAVaR) based on the multivariate geometric quantile approach and derive the symptotic properties of the proposed estimators for MVaR. We also present their performances under both simulated data and high-frequency financial data from the New York Stock Exchange. In addition, we compare our method with the delta normal approach and order statistics approach. The overall empirical results confirm that the multivariate geometric quantile approach significantly improves the risk management performance of MVaR and MAVaR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. The average value at risk (sometimes called expected shortfall or conditional value at risk) is a coherent risk measure. It is an alternative to VaR that is more sensitive to the shape of the loss distribution in the tail of the distribution. The “AVaR at \(q\%\) level” is the expected return on the portfolio in the worst \(q\%\) of cases.

  2. The corresponding robust regression approach is known as the quantile regression method (see Koenker 2005).

References

  • Arnold, B. C., Castillo, E., & Sarabia, J. M. (2009). Multivariate order statistics via multivariate concomitants. Journal of Multivariate Analysis, 100, 946–951.

    Article  Google Scholar 

  • Boudoukh, J., Richardson, M., & Whitelaw, R. (1997). Investigation of a class of volatility estimators. Journal of Derivatives, 4, 63–71.

    Article  Google Scholar 

  • Chakraborty, B. (2003). On multivariate quantile regression. Journal of Statistical Planning and Inference, 110, 109–132.

    Article  Google Scholar 

  • Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. Journal of the American Statistical Association, 91, 862–872.

    Article  Google Scholar 

  • Chen, S. X. (2008). Nonparametric estimation of expected shortfall. Journal of Financial Econometrics, 6(1), 87–107.

    Article  Google Scholar 

  • Chen, S. X., & Tang, C. Y. (2005). Nonparametric inference of value-at-risk for dependent financial returns. Journal of Financial Econometrics, 3(2), 227–255.

    Article  Google Scholar 

  • Chen, Y.-T., Sun, E., & Yu, M.-T. (2015). Improving model performance with the wavelet decomposition for high-frequency financial data. Studies in Nonlinear Dynamics and Econometrics, 19(4), 445–467.

    Google Scholar 

  • Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic Review, 39(4), 841–862.

    Article  Google Scholar 

  • Chun, S. Y., Shapiro, A., & Uryasev, S. (2012). Conditional value-at-risk and average value-at-risk: Estimation and asymptotics. Operations Research, 60, 739–756.

    Article  Google Scholar 

  • Cousin, A., & Bernardino, E. D. (2013). On multivariate extensions of value-at-risk. Journal of Multivariate Analysis, 119, 32–46.

    Article  Google Scholar 

  • Dowd, K. (2001). Estimating var with order statistics. Journal of Derivatives, 8(3), 23–30.

    Article  Google Scholar 

  • Dowd, K. (2006). Retrospective assessment of value-at-risk. In M. K. Ong (Ed.), Risk management: A modern perspective (pp. 183–202). San Diego: Elsevier.

    Chapter  Google Scholar 

  • Falk, M. (1984). Asymptotic normality of the kernel quantile estimator. The Annals of Statistics, 13(1), 428–433.

    Article  Google Scholar 

  • Giacomini, R., & Komunjer, I. (2005). Evaluation and combination of conditional quantile forecasts. Journal of Business and Economic Statistics, 23(4), 416–431.

    Article  Google Scholar 

  • Giacomini, R., & White, H. (2006). Tests of conditional predictive ability. Econometrica, 74(6), 1545–1578.

    Article  Google Scholar 

  • Girardi, G., & Ergun, A. T. (2013). Term-structures of credit spreads with incomplete accounting information. Journal of Banking & Finance, 37, 3169–3180.

    Article  Google Scholar 

  • Hull, J., & White, A. (1998). Incorporating volatility updating into the historical simulation method for value-at-risk. Journal of Risk, 1, 5–19.

    Article  Google Scholar 

  • Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kupiec, P. H. (1995). Techniques for verifying the accuracy of risk measurement models. The Journal of Derivatives, 3(2), 73–84.

    Article  Google Scholar 

  • Lopez, J. (1998). Methods for evaluating value-at-risk estimates. Economic Policy Review, October, 119–164.

  • Lopez, J. (1999). Regulatory evaluation of value-at-risk models. Journal of Risk, 1, 37–64.

    Article  Google Scholar 

  • Niemiro, W. (1992). Asymptotics for m-estimators defined by convex minimization. The Annals of Statistics, 20, 1514–1533.

    Article  Google Scholar 

  • Préopa, A. (2012). Multivariate value at risk and related topics. Annals of Operations Research, 193, 49–69.

    Article  Google Scholar 

  • Sheather, S. J., & Marron, J. S. (1990). Kernel quantile estimators. Journal of the American Statistical Association, 85(410), 410–416.

    Article  Google Scholar 

  • Sun, E., Chen, Y.-T., & Yu, M.-T. (2015). Generalized optimal wavelet decomposing algorithm for big financial data. International Journal of Production Economics, 165, 194–214.

    Article  Google Scholar 

  • Sun, E., Kruse, T., & Yu, M.-T. (2014). High frequency trading, liquidity, and execution cost. Annals of Operations Research, 233(1), 403–432.

    Article  Google Scholar 

  • Sun, E. W., & Meinl, T. (2012). A new wavelet-based denoising algorithm for high-frequency financial data mining. European Journal of Operational Research, 217(3), 589–599.

    Article  Google Scholar 

  • Sun, W., Rachev, S., & Fabozzi, F. (2009a). A new approach of using Lévy processes for determining high-frequency value at risk predictions. European Financial Management, 15, 340–361.

    Article  Google Scholar 

  • Sun, W., Rachev, S., Fabozzi, F., & Kalev, P. (2009b). A new approach to modeling co-movement of international equity markets: Evidence of unconditional copula-based simulation of tail dependence. Empirical Economics, 36, 201–229.

    Article  Google Scholar 

  • Taylor, J. B. (Ed.). (1999). A historical analysis of monetary policy rules. In Monetary policy rules. Chicago: University of Chicago Press.

    Google Scholar 

  • Yoshihara, K.-I. (1995). The Bahadur representation of sample quantiles for sequences of strongly mixing random variables. Statistics and Probability Letters, 24, 299–304.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Teh Yu.

Additional information

The authors would like to thank Yi-Ting Chen who assisted in computation. Sun’s research was supported by Frankfurt Energy Holding GmbH, Germany.

Appendices

Appendix A

We note that \(\varvec{e}_{[j_N]}=(e_{1, [j_N]}, \ldots , e_{p, [j_N]})^T\) is an order statistic of the residuals in the linear model; see Eq. (5). When N goes to infinity, the jth sample quantile is asymptotically normal with mean \(\varvec{q}\), which implies:

$$\begin{aligned} \int _{-\infty }^{q_i}f(e_i)de_i=\lambda _i, \end{aligned}$$

where \(f(e_i)\) is a marginal probability density function of \(e_i\) and \(0<\lambda _i<1\). We denote the cumulative distribution function of \(e_i\) as \(F(e_i)\), and the empirical distribution as:

$$\begin{aligned} \mathbb {F}_N(e_{i,[j_N]})=\frac{1}{N}\sum _{i=1}^{N}1\{e_{i}\le e_{i,[j_N]}\}, \end{aligned}$$

where \(N\mathbb {F}_N(e_{i,[j_N]})\) is binomially distributed with mean \(NF(q_{ij})\). Based on the central limit theorem we have:

$$\begin{aligned} \sqrt{N}(\mathbb {F}_N(e_{i,[j_N]})-F(q_{ij}))\rightarrow N(0, F(q_{ij})(1-F(q_{ij}))). \end{aligned}$$

With the Glivenko–Cantelli theorem and the strong law of large numbers, both \(\mathbb {F}_N(t) \overset{a.s.}{\rightarrow }F(t)\) and \(\mathbb {F}_N(t-) \overset{a.s.}{\rightarrow }F(t-)\) for every t. Given a fixed \(\varepsilon >0\), there exists a partition \(-\infty =t_{0}<t_{1}<\ldots <t_{k}=\infty \) such that \(F(t_\ell -)-F(t_{\ell -1})\) for every \(\ell \). Therefore, for \(t_{\ell -1}\le t<t_{\ell }\), we obtain:

$$\begin{aligned} \mathbb {F}_N(t)-F(t)\le & {} \mathbb {F}_N(t_\ell -)-F(t_\ell -)+\varepsilon \end{aligned}$$

and

$$\begin{aligned} \mathbb {F}_N(t)-F(t)\ge & {} \mathbb {F}_N(t_{\ell -1})-F(t_{\ell -1})-\varepsilon . \end{aligned}$$

The convergence of \(\mathbb {F}_N(t)\) and \(\mathbb {F}_N(t-)\) for every t is certainly uniform for t in the finite set \(\{t_1,\ldots ,t_{k-1}\}\). We can almost surely conclude that \(\lim \sup \Vert \mathbb {F}_N-F\Vert _{\infty }\le \varepsilon \). This is true for every \(\varepsilon >0\), and hence the limit superior is zero.

With the Donsker theorem and the extension of the central limit theorem to a “uniform” or “functional”, the empirical process \(G_{n,F}=\sqrt{N}(\mathbb {F}_{N}-F)\) converges in distribution in the space \(D[-\infty , \infty ]\) to the F-Brownian bridge process \(G_F=G_\lambda \circ F\), whose marginal distributions are zero mean normal distributions with covariance:

$$\begin{aligned} E(G_F(t_i)G_F(t_j))=F(t_i\wedge t_j)-F(t_i)F(t_j). \end{aligned}$$

The sample paths of the limit process are continuous at the points where F is continuous. The quantile function \(F\mapsto F^{-1}(\lambda )\) is tangentially Hadamard-differentiable to the range of the limit process. Letting \(F^{-1}=q\) be a quantile function by the functional delta method, the sequence \(\sqrt{N}(e_{[j_N]_{i}}-q_i)\) is asymptotically equivalent to the derivative of the quantile function evaluated as \(G_{N,F}\); that is, to \(-G_{N,F}(q)/f(q)\). This is the first assertion. Next, the asymptotic normality of the sequence \(\sqrt{N}(e_{[j_N]_{i}}-q_i)\) follows from the central limit theorem. We thus have:

$$\begin{aligned} \sqrt{N}(e_{[j_N]_{i}}-q_i)=-\frac{1}{N}\sum _{i=1}^{N}\frac{I(e_i\le q_i)-\lambda _i}{f(q_i)}+o(1). \end{aligned}$$

Consequently, the sequence \(\sqrt{N}(e_{[j_N]_{i}}-q_i)\) is asymptotically normal with mean zero, variance:

$$\begin{aligned} \sigma _{i}^2=\frac{\lambda _i(1-\lambda _i)}{(f(q_i))^2}, \end{aligned}$$

and covariance:

$$\begin{aligned} \sigma _{ij}=\frac{\lambda _i(1-\lambda _j)}{f(q_i)f(q_j)}. \end{aligned}$$

Hence, the asymptotic covariance matrix of \(\varvec{e}_{[j_N]}\) is:

$$\begin{aligned} \varvec{\lambda }(1-\varvec{\lambda })^T\Big (f_{\varvec{e}}(\varvec{q})f^T_{\varvec{e}}(\varvec{q})\Big )^{-1}. \end{aligned}$$

Appendix B

Suppose the following conditions are satisfied.

  1. (i)

    \(E\Vert g(\alpha , Z)\Vert <\infty \) for each \(\alpha \) in a neighborhood of \(\alpha _*\).

  2. (ii)

    \(Q(\alpha )\) is twice differentiable at \(\alpha _*\) and \(D^2Q(\alpha _*)\) is positive definite.

\(Q(\alpha )=E(f(\alpha ,Z)), Q(\alpha _*)=\min _{\alpha }Q(\alpha )\), \(f(\alpha ,z)\) is a real function defined for \(\alpha \in \mathbb {R}^p\) and \(z\in \varvec{Z}\), and \(g(\alpha ,z)\) is a subgradient of \(f(\alpha ,z)\), such that:

$$\begin{aligned} f(\alpha , z)+(\beta -\alpha )^Tg(\alpha ,z)<f(\beta ,z), \end{aligned}$$

with \(\beta \in \mathbb {R}^p\). We denote the gradient of \(Q(\alpha )\) by \(DQ(\alpha )\) and let \(D^2Q(\alpha )\) stand for the second derivative. Following the notation of Niemiro (1992), we get:

$$\begin{aligned} S_N=\sum _{i=1}^Ng(\alpha _*,\varvec{Z}_i),~\text {and}~H=D^2Q(\alpha _*). \end{aligned}$$

With conditions (i) and (ii), we have:

$$\begin{aligned} \sqrt{N}(\alpha _n-\alpha _*)=-H^{-1}\frac{S_n}{\sqrt{N}}+o(1),\quad N\rightarrow \infty , \end{aligned}$$

in probability, and asymptotic normality of \(\alpha _N\) clearly follows the central limit theorem:

$$\begin{aligned} \sqrt{N}(\alpha _N-\alpha _*)\rightarrow N(0,H^{-1}VH^{-1}),\quad N\rightarrow \infty , \end{aligned}$$

where V is the covariance matrix:

$$\begin{aligned} V=var(g(\alpha _*,Z)). \end{aligned}$$

Given \(\alpha _N=\hat{\varvec{q}}_N(u)\) and \(\alpha _*=\varvec{q}(u)\), we have:

$$\begin{aligned} \hat{\varvec{q}}_N(u)-\varvec{q}(u)=N^{-1}[D_1\{q(u)\}]^{-1}\times \sum _{i=1}^{N}[\Vert \varvec{y}_i-\varvec{q}(u)\Vert ^{-1}\{\varvec{y}_i-\varvec{q}(u)\}+\varvec{u}]+\varvec{R}_N(\varvec{u}), \end{aligned}$$

where as N tends to infinity, \(\varvec{R}_N(\varvec{u})\) is almost surely \(O(\log (N)/N)\) if \(p\le 3\), and when \(d=2, \varvec{R}_N(\varvec{u})\) is almost surely \(o(N^{-\gamma })\) for any fixed \(\gamma \) such that \(0<\gamma <1\). Let \(\varvec{u}_1,\ldots ,\varvec{u}_l\) be points in the open unit ball \(B^{(p)}\), where l is a fixed positive integer. Following Niemiro (1992), the joint asymptotic distribution of centered and normalized geometric quantiles

$$\begin{aligned} N^{1/2}\{\hat{\varvec{q}}_N(\varvec{u}_1)-\varvec{q}(\varvec{u}_1)\}, \ldots , N^{1/2}\{\hat{\varvec{q}}_N(\varvec{u}_l)-\varvec{q}(\varvec{u}_l)\} \end{aligned}$$

will have normal distribution with mean zero and asymptotic covariance matrix

$$\begin{aligned}{}[D_1\{\varvec{q}(\varvec{u}_r)\}]^{-1}[D_2{\varvec{q}(\varvec{u}_r), \varvec{q}(\varvec{u}_s), \varvec{u}_r, \varvec{u}_s}][D_1\{\varvec{q}(\varvec{u}_s)\}]^{-1}, \end{aligned}$$

where

$$\begin{aligned} D_1(\varvec{q})= & {} \frac{\psi (\varvec{u},\varvec{y}-\varvec{q})}{\partial (\varvec{y}-\varvec{q})\partial (\varvec{y}-\varvec{q})^T} \nonumber \\= & {} E[ \Vert \varvec{Y}-\varvec{q}\Vert ^ {-1}\{ \varvec{I}_p-\Vert \varvec{Y}- \varvec{q} \Vert ^{-2}(\varvec{Y}-\varvec{q})(\varvec{Y}-\varvec{q})^T \} ], \end{aligned}$$
(12)

and

$$\begin{aligned} D_2(\varvec{q}_1, \varvec{q}_2,\varvec{u},\varvec{v})= & {} \text {cov}\Big (\frac{\psi (\varvec{u},\varvec{y}-\varvec{q})}{\partial (\varvec{y}-\varvec{q})^T}\Big )\nonumber \\= & {} E[\{\Vert \varvec{Y}-\varvec{q}_1\Vert ^{-1}(\varvec{Y}-\varvec{q}_1)+\varvec{u}\}\{\Vert \varvec{Y}-\varvec{q}_2\Vert ^{-1}(\varvec{Y}-\varvec{q}_2)+\varvec{v}\}],\nonumber \\ \end{aligned}$$
(13)

for \(\varvec{q}_1, \varvec{q}_2 \in \mathbb {R}^p\), and \(\varvec{u}, \varvec{v} \in B^{(p)}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, E.W., Wang, YJ. & Yu, MT. Integrated Portfolio Risk Measure: Estimation and Asymptotics of Multivariate Geometric Quantiles. Comput Econ 52, 627–652 (2018). https://doi.org/10.1007/s10614-017-9708-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9708-2

Keywords

Navigation