Skip to main content
Log in

Simulation Analysis for Network Formulation

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In their model of network formation, Berninghaus et al. (Exp Econ 9:237–251, 2006; J Evol Econ 17:317–347, 2007) showed that a periphery-sponsored star network is a strict Nash equilibrium. To examine the validity of their result, they also performed a laboratory experiment with human subjects, and they found that a periphery-sponsored star network can be formed, but when broken down, a different star network forms. In this paper, after considering some factors explaining this phenomenon, we develop a simulation system involving these factors with artificial autonomous agents. Through simulations using this system, we try to explain the behavior of human subjects in the network formation experiment, i.e., the fact that a strict Nash equilibrium periphery-sponsored star network is broken down and a different periphery-sponsored star network is formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andreoni, J., & Miller, J. H. (1995). Auctions with artificial adaptive agents. Games and Economic Behavior, 10, 39–64.

    Article  Google Scholar 

  • Aumann, R. J. & Myerson, R. B. (1988). Endogenous formation of links between players and coalitions: An application of the shapley value. In A. Roth (Ed.), The shapley value. Cambridge: Cambridge University Press.

  • Axelrod, R. (1987). The evolution of strategies in the iterated prisoner’s dilemma. In L. Davis (Ed.), Genetic algorithms and simulated annealing (pp. 32–41). London: Pitman.

  • Axelrod, R. (1997). Advancing the art of simulation in the social sciences. In R. Conte, R. Hegselmann, & R. Terna (Eds.), Simulating social phenomena (pp. 21–40). Berlin: Springer-Verlag.

  • Bala, V., & Goyal, S. (2000). A non-cooperative model of network formation. Econometrica, 68, 1181–1229.

    Article  Google Scholar 

  • Banerje, B. & Sen, S. (2002). Selecting parters. In S. Parsons, P. Gmytrasiewicz & M. Wooldridge (Eds.), Game theory and decision theory in agent-based systems (pp. 27–42). Boston/Dordrecht/London: Kluwer Academic Publishers.

  • Berninghaus, S. K., Ehrhart, K. M., & Ott, M. (2006). A network experiment in continuous time: The influence of link costs. Experimental Economics, 9, 237–251.

    Article  Google Scholar 

  • Berninghaus, S. K., Ehrhart, K. M., Ott, M., & Vogt, B. (2007). Evolution of networks–an experimental analysis. Journal of Evolutionary Economics, 17, 317–347.

    Article  Google Scholar 

  • Bolton, G. E. (1991). A comparative model of bargaining: Theory and evidence. American Economic Review, 81, 1096–1136.

    Google Scholar 

  • Bolton, G. E., & Ockenfels, A. (2000). ERC: A theory of equity, reciprocity, and competition. American Economic Review, 90, 166–193.

    Article  Google Scholar 

  • Boorman, S. (1975). A combinatiorial optimization model for transmission of job information through contact networks. Bell Journal of Economics, 6, 216–249.

    Article  Google Scholar 

  • Breiger, R. L., Carley, K. M., & Pattison, P. E. (2003). Dynamic social network modeling and analysis: Workshop summary and papers. Washington, D.C.: The National Academies Press.

    Google Scholar 

  • Callander, S., & Plott, C. R. (2005). Principles of network development and evolution: An experimental study. Journal of Public Economics, 89, 1469–1495.

    Article  Google Scholar 

  • Chellapilla, K., & Fogel, D. B. (1999). Evolving neural networks to play checkers without expert knowledge. IEEE Transactions on Neural Networks, 10, 1382–1391.

    Article  Google Scholar 

  • Conte, R., Hegselmann, R., & Terna, R. (1997). Simulating social phenomena. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Costa-Gomes, M., & Zauner, K. G. (2001). Ultimatum bargaining behavior in Israel, Japan, Slovenia, and the United States: A social utility analysis. Game and Economic Behavior, 34, 238–269.

    Article  Google Scholar 

  • Currarini, S., & Morelli, M. (2000). Network formation with sequential demands. Review of Economic Design, 5, 229–250.

    Article  Google Scholar 

  • Deck, C., & Johnson, C. (2004). Link bidding in laboratory networks. Review Economic Design, 8, 359–372.

    Article  Google Scholar 

  • Doreian, P., & Stokman, F. (1997). Evolution of social networks. Amsterdam: Gordon and Breach Publishers.

    Google Scholar 

  • Dorsey, R.E., Johnson, J.D. & van Boening, M. V. (1994). The use of artificial neural networks for estimation of decision surfaces in first price sealed bid auctions. In W. W. Cooper, & A. B. Whinston (Eds.), New direction in computational economics (pp. 19–40). Dordrecht: Kluwer Academic Publishing.

  • Downing, T. E., Moss, S. & Pahl-Wostl C. (2001). Understanding climate policy using participatory agent-based social simulation. In S. Moss & P. Davidsson (Eds.), Multi-agent based simulation (pp. 198–213). Berlin: Springer-Verlag.

  • Epstein, J. M., & Axtell, R. (1996). Glowing artificial societies. Washington, D.C.: Brookings Institution Press.

    Google Scholar 

  • Erev, I., & Rapoport, A. (1998). Coodination, “magic”, and reinforcement learning in a market entry game. Games and Economic Behavior, 23, 146–175.

    Article  Google Scholar 

  • Erev, I., & Roth, A. E. (1998). Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria. American Economic Review, 88, 848–881.

    Google Scholar 

  • Falk, A., & Kosfeld, M. (2000). Network formation with sequential demands. Review of Economic Design, 5, 229–250.

    Article  Google Scholar 

  • Fehr, E., & Schmidt, K. M. (1999). A theory of fairness, competition and cooperation. Quarterly Journal Economics, 114, 817–868.

    Article  Google Scholar 

  • Friedkin, N. E. (1983). Horizons of observability and limits of informal control in organizations. Social Forces, 62, 54–77.

    Google Scholar 

  • Granovetter, M. (1995). Getting a job: A study of contacts and careers (2nd ed.). Chicago: University of Chicago Press.

    Google Scholar 

  • Goeree, J. K., Riedl, A., & Ule, A. (2008). In search of stars: Networkformation among heterogeneous agents. Games and Economic Behavior, 67, 445–466.

    Article  Google Scholar 

  • Goyal, S. (2007). Connections: An introduction to the economics of networks. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Hendricks, K., Piccione, M., & Tan, G. (1995). The economics of hubs: The case of monopoly. Review of Economics Studies, 62, 83–99.

    Article  Google Scholar 

  • Holland, J. H., & Miller, J. H. (1991). Adaptive intelligent agents in economic theory. American Economic Review, 81, 365–370.

    Google Scholar 

  • Jackson, M. O. (2005). A survey of models of network formation. Stability and efficiency. In G. Demange & M. Wooders (Eds.), Group formation in economics: Networks, clubs and coalitions (pp. 11–57). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Jackson, M. O., & Wolinsky, A. (1996). A strategic model of social and economic networks. Journal of Economic Theory, 71, 44–74.

    Article  Google Scholar 

  • Kalai, E., Postlewaite, A., & Roberts, G. (1978). Barriers to trade and disadvantageous middlemen: Nonmonotonicity of the core. Journal of Economic Theory, 19, 200–209.

    Article  Google Scholar 

  • Keren, M., & Levhari, D. (1983). The internal organization of the firm and the shape of averagecosts. Bell Journal of Economics, 14, 474–486.

    Article  Google Scholar 

  • Leshno, M., Moller, D., & Ein-Dor, P. (2002). Neural nets in a group decision process. International Journal of Game Theory, 31, 447–467.

    Article  Google Scholar 

  • Luce, D. (1959). Individual choice behavior. New York: Wiley.

    Google Scholar 

  • McKelvey, R. D., & Palfrey, T. R. (1995). Quantal response equilibria for normal form games. Games and Economic Behavior, 10, 6–38.

    Article  Google Scholar 

  • Montgomery, J. (1991). Social networks and labor market outcomes: Toward an economic analysis. American Economic Review, 81, 1408–1418.

    Google Scholar 

  • Moss, S., & Davidsson, P. (2001). Multi-agent-based simulation. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Mutuswami, S., & Winter, E. (2002). Subscription mechanisms for network formation. Journal of Economic Theory, 106, 242–264.

    Article  Google Scholar 

  • Nishizaki, I. (2007). A general framework of agent-based simulation for analyzing behavior of players in games. Journal of Telecommunications and Information Technology, 2007(4), 28–35.

    Google Scholar 

  • Nishizaki, I., Katagiri, H., & Oyama, T. (2009). Simulation analysis using multi-agent systems for social norms. Computational Economics, 34, 37–65.

    Article  Google Scholar 

  • Nishizaki, I., Ueda, Y., & Sasaki, T. (2005). Lotteries as a means of financing for preservation of the global commons and agent-based simulation analysis. Applied Artificial Intelligence, 19, 721–741.

    Article  Google Scholar 

  • Niv, Y., Joel, D., Meilijson, I., & Ruppin, E. (2002). Evolution of reinforcement learning in foraging bees: A simple explanation for risk averse behavior. Neurocomputing, 44–46, 951–956.

    Article  Google Scholar 

  • Ochs, J. (1995). Games with unique, mixed strategy equilibria: An experimental study. Games and Economic Behavior, 10, 202–217.

    Article  Google Scholar 

  • Parsons, S., Gmytrasiewicz, P., & Wooldridge, M. (2002). Game theory and decision theory in agent-based systems. London: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Rapoport, A., Seale, D. A., & Winter, E. (2002). Coordination and learning behavior in large groups with asymmetric players. Games and Economic Behavior, 39, 111–136.

    Article  Google Scholar 

  • Roth, A. E., & Erev, I. (1995). Learning in extensive form games: Experimental data and simple dynamic models in the intermediate term. Games and Economic Behavior, 8, 163–212.

    Article  Google Scholar 

  • Roth, A., & Sotomayor, M. (1989). Two sided matching. Econometric Society Monographs 18 (pp. 486–541). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schillo, M., Fischer, K., & Klein, C. T. (2000). The micro-macro link in DAI and sociology. In S. Moss & P. Davidsson (Eds.), Multi-agent-based simulation (pp. 133–148). Berlin: Springer.

  • Sharkey, W. (1993). Network models in economics. In M. O. Ball et al. (Eds.), The handbook of operations research and management science. Amsterdam.

  • Sichman, J. S., Bousquet, F., & Davidsson, P. (2003). Multi-agent-based simulation II. Heidelberg: Springer-Verlag.

    Book  Google Scholar 

  • Starr, R. & Stinchcombe, M., (1992). An economic analysis of the hub and spoke system. UC San Diego: Mimeo.

  • Stokman, F. N., & Doreian, P. (2001). The evolution of social networks, part II. Special Issue of Journal of Mathematical Sociology, 25, 1–4.

    Google Scholar 

  • Sundali, J. A., Rapoport, A., & Seale, D. A. (1995). Coordination in market entry games with symmetric players. Organizational Behavior and Human Decision Processes, 64, 203–218.

    Article  Google Scholar 

  • Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Hayashida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayashida, T., Nishizaki, I. & Kambara, R. Simulation Analysis for Network Formulation. Comput Econ 43, 371–394 (2014). https://doi.org/10.1007/s10614-013-9367-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-013-9367-x

Keywords

Navigation