Skip to main content
Log in

Bayesian source identification of urban-scale air pollution from point and field concentration measurements

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Air pollution poses a major threat to health, environment, and global climate. Characterizing the emission parameters responsible for air contamination can help formulate appropriate response plans. We propose an advanced methodology that uses Markov Chain Monte Carlo (MCMC) sampling within a Bayesian inference framework to invert for emission parameters of air contamination in an urban environment. We also use a high-resolution Lagrangian dispersion model to provide microscale wind computations as well as pollution concentration values in the presence of urban features with high complexity. Buildings and land use features were all integrated in a realistic urban setup that represents the region of King Abdullah University of Science and Technology, KSA. Boundary meteorological conditions acquired from a Weather Research and Forecasting (WRF) model simulation were employed to obtain the mesoscale wind field. We design numerical experiments to infer two common types of reference observations, a pollutant concentration distribution and point-wise discrete concentration values. The local \(L_2\) norm and global Wasserstein distance are investigated to quantify the discrepancies between the observations and the model predictions. The results of the conducted numerical experiments demonstrate the advantages of using the global optimal transport metric. They also emphasize the sensitivity of the inverted solution to the available observations. The proposed framework is proven to efficiently provide robust estimates of the emission parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Gómez-Losada, Á., Santos, F.M., Gibert, K., Pires, J.C.: A data science approach for spatiotemporal modelling of low and resident air pollution in madrid (spain): implications for epidemiological studies. Comput. Environ. Urban. Syst. 75, 1–11 (2019)

    Article  Google Scholar 

  2. Schindler, M., Caruso, G.: Urban compactness and the trade-off between air pollution emission and exposure: Lessons from a spatially explicit theoretical model. Comput. Environ. Urban. Syst. 45, 13–23 (2014)

    Article  Google Scholar 

  3. Zou, B., Li, S., Zheng, Z., Zhan, B.F., Yang, Z., Wan, N.: Healthier routes planning: A new method and online implementation for minimizing air pollution exposure risk. Comput. Environ. Urban. Syst. 80, 101456 (2020)

    Article  Google Scholar 

  4. Gao, Y., Wang, Z., Liu, C., Peng, Z.-R.: Assessing neighborhood air pollution exposure and its relationship with the urban form. Build. Environ. 155, 15–24 (2019)

    Article  Google Scholar 

  5. Al-sareji, O.J., Grmasha, R.A., Hashim, K.S., Salman, J.M., Al-Juboori, R.A.: Personal exposure and inhalation doses to pm1 and pm2.5 pollution in iraq: An examination of four transport modes. Build. Environ. 212, 108847 (2022)

  6. Tikhonov, A.N., Goncharsky, A., Stepanov, V., Yagola, A.G.: Numerical methods for the solution of ill-posed problems. Springer (2013)

  7. Menke, W.: Geophysical data analysis: Discrete inverse theory. Academic press (2018)

  8. Dabberdt, W.F., Miller, E.: Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmos. Environ. 34(27), 4667–4673 (2000)

    Article  Google Scholar 

  9. Hanna, S.R., Yang, R.: Evaluations of mesoscale models’ simulations of near-surface winds, temperature gradients, and mixing depths. J. Appl. Meteorol. 40(6), 1095–1104 (2001)

    Article  Google Scholar 

  10. Rao, K.S.: Uncertainty analysis in atmospheric dispersion modeling. Pure Appl. Geophys. 162(10), 1893–1917 (2005)

    Article  Google Scholar 

  11. Li, X., Xue, F.: Bayesian inversion of inflow direction and speed in urban dispersion simulations. Build. Environ. 144, 555–564 (2018)

    Article  Google Scholar 

  12. Stuart, M.B., McGonigle, A.J., Willmott, J.R.: Hyperspectral imaging in environmental monitoring: a review of recent developments and technological advances in compact field deployable systems. Sensors 19(14), 3071 (2019)

    Article  Google Scholar 

  13. Tuominen, J., Lipping, T.: Detection of environmental change using hyperspectral remote sensing at olkiluoto repository site. Technical report, Posiva Oy (2011)

  14. Gaudio, P., Gelfusa, M., Malizia, A., Parracino, S., Richetta, M., De Leo, L., Perrimezzi, C., Bellecci, C.: Detection and monitoring of pollutant sources with lidar/dial techniques. In: Journal of Physics: Conference Series, vol. 658, p. 012004 (2015). IOP Publishing

  15. Remsberg, E.E.: Remote Measurement of Pollution-a 40-year Langley Retrospective: Part I-Temperature and Gaseous Species. National Aeronautics and Space Administration, Langley Research Center (2011)

  16. Remsberg, E.E.: Remote Measurement of Pollution-a 40-year Langley Retrospective: Part II-Aerosols and Clouds. National Aeronautics and Space Administration, Langley Research Center (2012)

  17. Buckland, K.N., Young, S.J., Keim, E.R., Johnson, B.R., Johnson, P.D., Tratt, D.M.: Tracking and quantification of gaseous chemical plumes from anthropogenic emission sources within the los angeles basin. Remote. Sens. Environ. 201, 275–296 (2017)

    Article  Google Scholar 

  18. Tratt, D.M., Young, S.J., Hackwell, J.A., Rudy, D.J., Warren, D.W., Vore, A.G., Johnson, P.D.: Mahi: An airborne mid-infrared imaging spectrometer for industrial emissions monitoring. IEEE Trans. Geosci. Remote Sens. 55(8), 4558–4566 (2017)

    Article  Google Scholar 

  19. Procházka, A., Kolinova, M., Fiala, J., Hampl, P., Hlavaty, K.: Satellite image processing and air pollution detection. In: 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), vol. 4, pp. 2282–2285 (2000). IEEE

  20. Wong, C.J., MatJafri, M.Z., Abdullah, K., Lim, H.S.: Development of low cost air quality monitoring system by using image processing technique. In: Chen, Y.-S. (ed.) Image Processing. IntechOpen, Rijeka (2009). https://doi.org/10.5772/7048

  21. Sulistiyanti, S.R., Setyawan, F., Komarudin, M.: Detection air pollution based on infrared image processing. Telkomnika 17(4), 1796–1802 (2019)

    Article  Google Scholar 

  22. Fordyce, J.S.: Air pollution source identification. In: Proc. 2nd Federal Conference on the Great Lakes. Interagency Committee on Marine Science and Engineering of the Federal Council for Science and Technology. p. 130 (1975)

  23. Copeland, G., Bandy, A., Kindle, E., Blais, R., Hilton, G.: Remote detection of aerosol pollution by erts (1973)

  24. Bolla, G.M., Casagrande, M., Comazzetto, A., Dal Moro, R., Destro, M., Fantin, E., Colombatti, G., Aboudan, A., Lorenzini, E.C.: Aria: Air pollutants monitoring using uavs. In: 2018 5th IEEE International Workshop on Metrology for AeroSpace (MetroAeroSpace), pp. 225–229 (2018). IEEE

  25. Usama, M.: Monitoring Air Pollution using Drones. (2018). https://dronebelow.com/2018/09/13/monitoring-air-pollution-using-drones/

  26. Xu, C., Wang, J., Hu, M., Wang, W.: A new method for interpolation of missing air quality data at monitor stations. Environment International 169, 107538 (2022)

    Article  Google Scholar 

  27. Berrocal, V.J., Guan, Y., Muyskens, A., Wang, H., Reich, B.J., Mulholland, J.A., Chang, H.H.: A comparison of statistical and machine learning methods for creating national daily maps of ambient pm2. 5 concentration. Atmos. Environ. 222, 117130 (2020)

  28. Chu, H.-J., Bilal, M.: Pm2. 5 mapping using integrated geographically temporally weighted regression (gtwr) and random sample consensus (ransac) models. Environ. Sci. Pollut. Res. 26(2), 1902–1910 (2019)

  29. Lee, S.-J., Serre, M.L., van Donkelaar, A., Martin, R.V., Burnett, R.T., Jerrett, M.: Comparison of geostatistical interpolation and remote sensing techniques for estimating long-term exposure to ambient pm2. 5 concentrations across the continental united states. Environ. Health Perspect. 120(12), 1727–1732 (2012)

  30. Robertson, L., Langner, J.: Source function estimate by means of variational data assimilation applied to the etex-i tracer experiment. Atmos. Environ. 32(24), 4219–4225 (1998)

    Article  Google Scholar 

  31. Pudykiewicz, J.A.: Application of adjoint tracer transport equations for evaluating source parameters. Atmos. Environ. 32(17), 3039–3050 (1998)

    Article  Google Scholar 

  32. Allen, C.T., Young, G.S., Haupt, S.E.: Improving pollutant source characterization by better estimating wind direction with a genetic algorithm. Atmos. Environ. 41(11), 2283–2289 (2007)

    Article  Google Scholar 

  33. Cervone, G., Franzese, P.: Machine learning for the source detection of atmospheric emissions. Technical report, American Meteorological Society (2010)

  34. Cervone, G., Franzese, P.: Non-darwinian evolution for the source detection of atmospheric releases. Atmos. Environ. 45(26), 4497–4506 (2011)

    Article  Google Scholar 

  35. Issartel, J.-P.: Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation. Atmos. Chem. Phys. 5(1), 249–273 (2005)

    Article  Google Scholar 

  36. Allen, C.T., Haupt, S.E., Young, G.S.: Source characterization with a genetic algorithm-coupled dispersion-backward model incorporating scipuff. J. Appl. Meteorol. Climatol. 46(3), 273–287 (2007)

  37. Keats, A., Yee, E., Lien, F.-S.: Bayesian inference for source determination with applications to a complex urban environment. Atmos. Environ. 41(3), 465–479 (2007)

    Article  Google Scholar 

  38. Senocak, I., Hengartner, N.W., Short, M.B., Daniel, W.B.: Stochastic event reconstruction of atmospheric contaminant dispersion using bayesian inference. Atmos. Environ. 42(33), 7718–7727 (2008)

    Article  Google Scholar 

  39. Xu, T., White, L., Hui, D., Luo, Y.: Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction. Glob. Biogeochem. Cycles 20(2) (2006). https://doi.org/10.1029/2005GB002468. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GB002468

  40. Winiarek, V., Vira, J., Bocquet, M., Sofiev, M., Saunier, O.: Towards the operational estimation of a radiological plume using data assimilation after a radiological accidental atmospheric release. Atmos. Environ. 45(17), 2944–2955 (2011)

    Article  Google Scholar 

  41. Johannesson, G., Hanley, B., Nitao, J.: Dynamic bayesian models via monte carlo-an introduction with examples. Technical report, Lawrence Livermore National Lab., Livermore, CA (US) (2004)

  42. Yee, E., Lien, F.-S., Keats, A., D’Amours, R.: Bayesian inversion of concentration data: Source reconstruction in the adjoint representation of atmospheric diffusion. J. Wind Eng. Ind. Aerodyn. 96(10–11), 1805–1816 (2008)

    Article  Google Scholar 

  43. Gamerman, D., Lopes, H.F.: Markov chain Monte Carlo: stochastic simulation for Bayesian inference. CRC press (2006)

  44. Chen, M.-H., Shao, Q.-M., Ibrahim, J.G.: Monte Carlo methods in Bayesian computation. Springer (2012)

  45. Rajaona, H., Septier, F., Armand, P., Delignon, Y., Olry, C., Albergel, A., Moussafir, J.: An adaptive bayesian inference algorithm to estimate the parameters of a hazardous atmospheric release. Atmos. Environ. 122, 748–762 (2015)

    Article  Google Scholar 

  46. Delle Monache, L., Lundquist, J.K., Kosović, B., Johannesson, G., Dyer, K.M., Aines, R.D., Chow, F.K., Belles, R.D., Hanley, W.G., Larsen, S.C., et al.: Bayesian inference and markov chain monte carlo sampling to reconstruct a contaminant source on a continental scale. J. Appl. Meteorol. Climatol. 47(10), 2600–2613 (2008)

    Article  Google Scholar 

  47. Sousa, J., Gorlé, C.: Computational urban flow predictions with bayesian inference: Validation with field data. Build. Environ. 154, 13–22 (2019)

    Article  Google Scholar 

  48. Carvalho, J.C., Vilhena, M.T., Moreira, D.M.: Comparison between eulerian and lagrangian semi-analytical models to simulate the pollutant dispersion in the pbl. Appl. Math. Model. 31(1), 120–129 (2007)

    Article  Google Scholar 

  49. Ling, H., Lung, S.-C.C., Uhrner, U.: Micro-scale particle simulation and traffic-related particle exposure assessment in an asian residential community. Environ. Pollut. 266, 115046 (2020)

    Article  Google Scholar 

  50. Romanov, A.A., Gusev, B.A., Leonenko, E.V., Tamarovskaya, A.N., Vasiliev, A.S., Zaytcev, N.E., Philippov, I.K.: Graz lagrangian model (gral) for pollutants tracking and estimating sources partial contributions to atmospheric pollution in highly urbanized areas. Atmosphere 11(12), 1375 (2020)

    Article  Google Scholar 

  51. Berchet, A., Zink, K., Oettl, D., Brunner, J., Emmenegger, L., Brunner, D.: Evaluation of high-resolution gramm–gral (v15. 12/v14. 8) no x simulations over the city of zürich, switzerland. Geosci. Model Dev. 10(9), 3441–3459 (2017)

  52. Asadi, M., Asadollahfardi, G., Fakhraee, H., Mirmohammadi, M.: The comparison of lagrangian and gaussian models in predicting of air pollution emission using experimental study, a case study: Ammonia emission. Environ. Model. Assess. 22(1), 27–36 (2017)

    Article  Google Scholar 

  53. Huang, Z., Wang, Y., Yu, Q., Ma, W., Zhang, Y., Chen, L.: Source area identification with observation from limited monitor sites for air pollution episodes in industrial parks. Atmos. Environ. 122, 1–9 (2015)

  54. Wang, Y.: An inversion method to backtrack source parameters and associated concentration field for an inert gas release in urban environments. Technical report, ARMY RESEARCH LAB ADELPHI MD (2008)

  55. Chow, F.K., Kosović, B., Chan, S.: Source inversion for contaminant plume dispersion in urban environments using building-resolving simulations. J. Appl. Meteorol. Climatol. 47(6), 1553–1572 (2008)

    Article  Google Scholar 

  56. Guo, S., Yang, R., Zhang, H., Weng, W., Fan, W.: Source identification for unsteady atmospheric dispersion of hazardous materials using markov chain monte carlo method. Int. J. Heat Mass Transfer 52(17–18), 3955–3962 (2009)

    Article  Google Scholar 

  57. Jia, H., Kikumoto, H.: Source term estimation in complex urban environments based on bayesian inference and unsteady adjoint equations simulated via large eddy simulation. Build. Environ. 193, 107669 (2021)

    Article  Google Scholar 

  58. Bezpalcova, K., Harms, F.: Ewtl data report/part i: summarized test description mock urban setting test. Centre for Marine and Atmospheric Research, University of Hamburg, Environmental Wind Tunnel Laboratory (2005)

  59. Benamou, J.-D., Brenier, Y.: A computational fluid mechanics solution to the monge-kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  Google Scholar 

  60. Farchi, A., Bocquet, M., Roustan, Y., Mathieu, A., Quérel, A.: Using the wasserstein distance to compare fields of pollutants: application to the radionuclide atmospheric dispersion of the fukushima-daiichi accident. Tellus B Chem. Phys. Meteorol. 68(1), 31682 (2016)

    Article  Google Scholar 

  61. Oettl, D. Documentation of the Lagrangian Particle Model GRAL (Graz Lagrangian Model) Version 19.1. Amt d. Stmk. Landesregierung: Graz, Austria (2018). https://www.researchgate.net/profile/Dietmar_Oettl/publications

  62. Oettl, D. Documentation of the prognostic mesoscale model GRAMM (Graz Mesoscale Model) Version 19.1. Amt d. Stmk. Landesregierung: Graz, Austria (2019). https://www.researchgate.net/profile/Dietmar_Oettl/publications

  63. Berchet, A., Zink, K., Muller, C., Oettl, D., Brunner, J., Emmenegger, L., Brunner, D.: A cost-effective method for simulating city-wide air flow and pollutant dispersion at building resolving scale. Atmos. Environ. 158, 181–196 (2017)

    Article  Google Scholar 

  64. Almbauer, R., Piringer, M., Baumann, K., Oettl, D., Sturm, P.: Analysis of the daily variations of wintertime air pollution concentrations in the city of graz, austria. Environ. Monit. Assess. 65(1), 79–87 (2000)

    Article  Google Scholar 

  65. Fabbi, S., Asaro, S., Bigi, A., Teggi, S., Ghermandi, G.: Impact of vehicular emissions in an urban area of the po valley by microscale simulation with the gral dispersion model. In: IOP Conference Series: Earth and Environmental Science, vol. 296, p. 012006 (2019). IOP Publishing

  66. Kurz, C., Orthofer, R., Sturm, P., Kaiser, A., Uhrner, U., Reifeltshammer, R., Rexeis, M.: Projection of the air quality in vienna between 2005 and 2020 for no2 and pm10. Urban Clim. 10, 703–719 (2014)

  67. Oettl, D., Sturm, P., Almbauer, R., Okamoto, S., Horiuchi, K.: Dispersion from road tunnel portals: comparison of two different modelling approaches. Atmos. Environ. 37(37), 5165–5175 (2003)

    Article  Google Scholar 

  68. Oettl, D., Sturm, P.J., Bacher, M., Pretterhofer, G., Almbauer, R.A.: A simple model for the dispersion of pollutants from a road tunnel portal. Atmos. Environ. 36(18), 2943–2953 (2002)

    Article  Google Scholar 

  69. Wolkinger, B., Haas, W., Bachner, G., Weisz, U., Steininger, K.W., Hutter, H.-P., Delcour, J., Griebler, R., Mittelbach, B., Maier, P., et al.: Evaluating health co-benefits of climate change mitigation in urban mobility. Int. J. Environ. Res. Public Health 15(5), 880 (2018)

    Article  Google Scholar 

  70. Oettl, D. Documentation of the Lagrangian Particle Model GRAL (Graz Lagrangian Model) Version 19.1. Amt d. Stmk. Landesregierung: Graz, Austria (2019). https://www.researchgate.net/profile/Dietmar_Oettl/publications

  71. Roddis, D., Manansala, F., Boulter, P., Barnett, J., Kurz, C.: Optimisation of the application of gral in the australian context. Pacific Environment. Document control number: AQU-NW-012-21062 (2017). https://www.chiefscientist.nsw.gov.au/__data/assets/pdf_file/0011/125030/ACTAQ-GRAL-optimisation-MAIN.pdf

  72. CORINE Land Cover (2018). https://land.copernicus.eu/

  73. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., Powers, J.G., Duda, M.G., Barker, D.M., et al.: A description of the advanced research wrf model version 4. Natl. Cent. Atmos. Res. Boulder CO USA 145, 145 (2019)

  74. Foreman, R.J., Emeis, S.: A method for increasing the turbulent kinetic energy in the mellor–yamada–janjić boundary-layer parametrization. Bound.-Layer Meteorol. 145(2), 329–349 (2012)

  75. Milbrandt, J., Yau, M.: A multimoment bulk microphysics parameterization. part ii: A proposed three-moment closure and scheme description. J. Atmos. Sci. 62(9), 3065–3081 (2005)

  76. Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A.: Radiative transfer for inhomogeneous atmospheres: Rrtm, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 102(D14), 16663–16682 (1997)

    Article  Google Scholar 

  77. Langodan, S., Cavaleri, L., Viswanadhapalli, Y., Hoteit, I.: The red sea: a natural laboratory for wind and wave modeling. J. Phys. Oceanogr. 44(12), 3139–3159 (2014)

    Article  Google Scholar 

  78. Langodan, S., Viswanadhapalli, Y., Dasari, H.P., Knio, O., Hoteit, I.: A high-resolution assessment of wind and wave energy potentials in the red sea. Appl. Energy 181, 244–255 (2016)

    Article  Google Scholar 

  79. Viswanadhapalli, Y., Dasari, H.P., Langodan, S., Challa, V.S., Hoteit, I.: Climatic features of the red sea from a regional assimilative model. Int. J. Climatol. 37(5), 2563–2581 (2017)

    Article  Google Scholar 

  80. Dasari, H.P., Desamsetti, S., Langodan, S., Karumuri, R.K., Singh, S., Hoteit, I.: Atmospheric conditions and air quality assessment over neom, kingdom of saudi arabia. Atmos. Environ. 230, 117489 (2020)

    Article  Google Scholar 

  81. Box, G.E., Tiao, G.C.: Bayesian inference in statistical analysis. Wiley (2011)

  82. Robert, C.P.: From Decision-Theoretic Foundations to Computational Implementation. 2. New York: Springer (2007)

  83. Jaynes, E.T.: Probability theory: The logic of science. Cambridge university press (2003)

  84. Villani, C.: Topics in optimal transportation. American Mathematical Soc. (2003)

  85. Lévy, B., Schwindt, E.L.: Notions of optimal transport theory and how to implement them on a computer. Comput. Graph. 72, 135–148 (2018)

    Article  Google Scholar 

  86. Monge, G.: Mémoire sur la théorie des déblais et des remblais. Histoire de l’Académie Royale des Sciences de Paris (1781)

  87. Mérigot, Q., Mirebeau, J.-M.: Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM J. Numer. Anal. 54(6), 3465–3492 (2016)

    Article  Google Scholar 

  88. McCann, R.J., et al.: Existence and uniqueness of monotone measure-preserving maps. Duke Math. J. 80(2), 309–324 (1995)

    Article  Google Scholar 

  89. Petitjean, M.: Chiral mixtures. J. Math. Phys. 43(8), 4147–4157 (2002)

    Article  Google Scholar 

  90. Petitjean, M.: From shape similarity to shape complementarity: toward a docking theory. J. Math. Chem. 35(3), 147–158 (2004)

    Article  Google Scholar 

  91. Martin Arjovsky, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34 Th International Conference on Machine Learning, Sydney, Australia (2017)

  92. Peyré, G., Cuturi, M., et al.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607 (2019)

    Article  Google Scholar 

  93. Caffarelli, L., Oliker, V.: Weak solutions of one inverse problem in geometric optics. J. Math. Sci. 154(1), 39–49 (2008)

    Article  Google Scholar 

  94. Villani, C.: Grundlehren math. wiss. (2009)

  95. Ma, X.-N., Trudinger, N.S., Wang, X.-J.: Regularity of potential functions of the optimal transportation problem. Arch. Ration. Mech. Anal. 177(2), 151–183 (2005)

    Article  Google Scholar 

  96. Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)

    Google Scholar 

  97. Peter D.H.: Kernel estimation of a distribution function. Commun. Stat.-Theory Methods 14(3), 605–620 (1985)

  98. Botev, Z.I., Grotowski, J.F., Kroese, D.P.: Kernel density estimation via diffusion. Ann. Stat. 38(5), 2916–2957 (2010)

    Article  Google Scholar 

  99. Botev, Z.: Fast multivariate kernel density estimation for high dimensions. Mathworks (2016)

Download references

Funding

This work was supported by the Office of the Vice President of Research at King Abdullah University of Science and Technology (KAUST) under the Virtual Red Sea Initiative (Grant #REP/1/3268-01-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Hoteit.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Aawar, E., El Mohtar, S., Lakkis, I. et al. Bayesian source identification of urban-scale air pollution from point and field concentration measurements. Comput Geosci 27, 605–626 (2023). https://doi.org/10.1007/s10596-023-10206-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-023-10206-5

Keywords

Navigation