Skip to main content
Log in

Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Distributed Gauss-Newton (DGN) optimization method has been proved very efficient and robust for history matching and uncertainty quantification (HM&UQ). The major bottleneck for performance enhancement is the expensive computational cost of solving hundreds of Gauss-Newton trust-region (GNTR) subproblems in each iteration. The original GNTR solver applies the less efficient iterative Newton-Raphson (NR) method using a derivative which requires solving a large-scale linear system twice in each NR iteration. Instead of using a less accurate linear proxy as in the iterative NR method, the nonlinear GNTR equation is first approximated with an inverse-quadratic (IQ) or a cubic-spline (CS) model, by fitting points generated in previous iterations without using any derivative. Then, the analytical (or numerical) solution of the IQ (or CS) model is used as the new proposal for the next iteration. The performances of the two new GNTR solvers are benchmarked against different methods on different sets of test problems with different numbers of uncertain parameters (ranging from 500 to 100,000) and different numbers of observed data (ranging from 100 to 100,000). In terms of efficiency and robustness, the two new GNTR solvers have comparable performance, and they outperform other methods we tested, including the well-known direct and iterative trust-region solvers of the GALAHAD optimization library. Finally, the proposed GNTR solvers have been implemented in our in-house distributed HM&UQ system. Our numerical experiments indicate that the DGN optimizer using the newly proposed GNTR solver performs quite stable and is effective when applied to real-field history matching problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, C., et al.: Assisted history matching of channelized models using pluri-principal component analysis. SPE J. 21(5). https://doi.org/10.2118/173192-PA (2016)

  2. Chen, C., et al.: Global search distributed-Gauss-Newton optimization methods and its integration with the randomized-maximum-likelihood method for uncertainty quantification of reservoir performance. SPE J. 23(5), 1496–1517 (2018). https://doi.org/10.2118/182639-PA

    Article  Google Scholar 

  3. Conn, A.R., Gould, N.I.M., Toint, P.L.: Trust-Region Methods. Society for Industrial and Applied Mathematical Programming Society, Philadelphia (2000)

    Book  Google Scholar 

  4. Dolan, E.D., More, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91(2), 201–213 (2002)

    Article  Google Scholar 

  5. Erway, J.B., Gill, P.E., Griffin, J.D.: Iterative methods for finding a trust-region step. SIAM. J. Optim. 20(2), 1110–1131 (2009)

    Google Scholar 

  6. Ferreira, O.P., Goncalves, M.L.N, Oliveira, P.R.: Local convergence analysis of the Gauss–Newton method under a majorant condition. J. Complex. 27(1), 111–125 (2011)

    Article  Google Scholar 

  7. Fortin, C., Wolkowicz, H.: The trust region subproblem and semidefinite programming. Optim. Methods Softw. 19(1), 41–67 (2004)

    Article  Google Scholar 

  8. Gao, G., et al.: Uncertainty quantification for history matching problems with multiple best matches using a distributed Gauss-Newton method. Paper SPE-181611-MS presented at the SPE Annual Technical Conference and Exhibition held in Dubai, UAE, 26–28 September (2016)

  9. Gao, G., et al.: Distributed Gauss-Newton optimization method for history matching problems with multiple best matches. Comput. Geosci. 21(5–6), 1325–1342 (2017)

    Article  Google Scholar 

  10. Gao, G., et al.: A Gauss-Newton trust region solver for large scale history matching problems. SPE J. 22(6): https://doi.org/10.2118/182602-PA (2017)

  11. Gao, G., et al.: Gaussian mixture model fitting method for uncertainty quantification by conditioning to production data. Paper Presented at the 16th edition of the European Conference on the Mathematics of Oil Recovery held in Barcelona, Spain, 3–6 September (2018)

  12. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Statist. Comput. 2(2), 186–197 (1981)

    Article  Google Scholar 

  13. Goncalves, M.L.N.: Local convergence of the Gauss–Newton method for injective-overdetermined systems of equations under a majorant condition. Comput. Math. Appl. 66(4), 490–499 (2013)

    Article  Google Scholar 

  14. Gould, N.I.M., et al.: Solving the trust-region subproblem using the Lanczos method. SIAM J. Optim. 9(2), 504–525 (1999)

    Article  Google Scholar 

  15. Gould, N.I.M., Orban, D., Toint, Ph.L.: GALAHAD, a library of thread-safe Fortran 90 packages for large-scale nonlinear optimization. ACM Trans. Math. Softw. 29(4), 353–372 (2004)

    Article  Google Scholar 

  16. Gould, N.I.M., Robinson, D., Thorne, H.S.: On solving trust-region and other regularized subproblems in optimization. Math. Program. Comput. 2(1), 21–57 (2010)

    Article  Google Scholar 

  17. Guo, Z., et al.: EUR assessment of unconventional assets using machine learning and distributed computing techniques. Paper URTeC:2659996 presented at the Unconventional Resources Technology Conference held in Austin, Texas, USA, 24–26 July (2017a)

  18. Guo, Z., et al.: Applying support vector regression to reduce the effect of numerical noise and enhance the performance of history matching. Paper SPE-187430-MS presented at the SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 9–11 October (2017b)

  19. Hager, W.W.: Minimizing a quadratic over a sphere. SIAM J. Optim. 12(1), 188–208 (2001)

    Article  Google Scholar 

  20. Hager, W.W., Park, S.: Global convergence of SSM for minimizing a quadratic over a sphere. Math. Comput. 74(251), 1413–1423 (2005)

    Article  Google Scholar 

  21. Kitanidis, P.K.: Quasi-linear geostatistical theory for inversing. Water Resour. 31(8), 2411–2419 (1995)

    Article  Google Scholar 

  22. More, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)

    Article  Google Scholar 

  23. Odeh, A.: Comparison of solutions to a three dimensional black-oil reservoir simulation problem. JPT 33(1), 13–25 (1981)

    Article  Google Scholar 

  24. Oliver, D.S.: Multiple realization of the permeability field from well-test data. SPE J. 1(2), 145–155 (1996)

    Article  Google Scholar 

  25. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–211 (2011)

    Article  Google Scholar 

  26. Oliver, D.S., Reynolds, A.C., Liu, N.: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  27. Rafiee, J., Reynolds, A.C.: A two-level MCMC based on the distributed Gauss-Newton method for uncertainty quantification. In: The 16th European Conference on the Mathematics of Oil Recovery, Barcelona, Spain, 3–6 September (2018)

  28. Rendl, F., Wolkowicz, H.: A semi-definite framework for trust region subproblems with applications to large scale minimization. Math. Program. 77(1), 273–299 (1997)

    Article  Google Scholar 

  29. Rojas, M., Sorensen, D.C.: A trust-region approach to the regularization of large-scale discrete form of ill-posed problems. SIAM J. Sci. Comput. 23(6), 1842–1860 (2002)

    Article  Google Scholar 

  30. Rojas, M., Santos, S.A., Sorensen, D.C.: A new matrix-free algorithm for the large-scale trust-region subproblem. SIAM J. Optim. 11(3), 611–646 (2001)

    Article  Google Scholar 

  31. Rojas, M., Santos, S.A., Sorensen, D.C.: Algorithm 873: LSTRS: MATLAB software for large-scale trust-region subproblems and regularization. ACM Trans. Math. Softw. 34(2), 1–28 (2008)

    Article  Google Scholar 

  32. Sorensen, D.C.: Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J. Optim. 7(1), 141–161 (1997)

    Article  Google Scholar 

  33. Sorensen, D.C.: Newton’s method with a model trust region modification. SIAM J. Numer. Anal. 19(2), 409–426 (1982)

    Article  Google Scholar 

  34. Tarantola, A.: Inverse Problem Theory and Methods for Model Parameter Estimation. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  35. Toint, P.L.: Towards an efficient sparsity exploiting Newton method for minimization. In: Duff, I.S. (ed.) Sparse Matrix and Their Uses, pp. 57–88. Academic, London and New York (1981)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Gao.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Cubic spline interpolation without derivative

Appendix: Cubic spline interpolation without derivative

Let \(c_{i}\left (\lambda \right )\) be a cubical function that interpolates the two points, pi− 1 = p(λi− 1) and pi = p(λi) with λi− 1 < λi, i.e.

$$ \begin{array}{@{}rcl@{}} c_{i}\left( \lambda \right)&=&\left( 1-t \right)p_{i-1}+tp_{i}+t\left( 1-t \right)[a_{i}\left( 1-t \right)+b_{i}t],\\ &&\text{for}~i=1,2,{\ldots} ,m. \end{array} $$
(33)

In Eq. 33, t = (λλi− 1)δi− 1, \(a_{i}=\frac {k_{i-1}}{\delta _{i-1}}-{\Delta } p_{i-1}\), and \(b_{i}=-\frac {k_{i}}{\delta _{i-1}}{+{\Delta } }p_{i-1}\). Here, we define δi− 1 = 1/(λiλi− 1) and Δpi− 1 = pipi− 1. \(k_{i}=c_{i}^{\prime }(\lambda _{i})\) is the derivative of \(c_{i}\left (\lambda \right )\) evaluated at λi. The first- and the second-order derivatives of \(c_{i}\left (\lambda \right )\) are, respectively

$$ \begin{array}{@{}rcl@{}} c_{i}^{\prime}\left( \lambda \right)&=&\left\{ {\Delta} p_{i-1}{+(1-2}t)[a_{i}\left( 1-t \right){+}b_{i}t]\right.\\ &&\left.+(b_{i}-a_{i})t\left( 1-t \right) \right\}\delta_{i-1}. \end{array} $$
(34)
$$ c_{i}^{\prime\prime}\left( \lambda \right)=2\left\{ b_{i}-2a_{i}+3(a_{i}-b_{i})t \right\}\delta_{i-1}^{\mathrm{2}}. $$
(35)

Obviously, the first-order derivative is continuous at point λi; i.e., \(k_{i}=c_{i}^{\prime }\left (\lambda _{i} \right )=c_{i{+1}}^{\prime }(\lambda _{i})\) for i = 1, 2,…,m − 1. At the two ending points, we have \(k_{\mathrm {0}}=c_{\mathrm {1}}^{\prime }\left (\lambda _{\mathrm {0}} \right )\) and \(k_{m}=c_{m}^{\prime }\left (\lambda _{m} \right )\). The second-order derivative of \(c_{i}^{\prime \prime }\left (\lambda \right )\) at the two points λi− 1 and λi are, respectively

$$ c_{i}^{\prime\prime}\left( \lambda_{i-1} \right)=6{\Delta} p_{i-1}\delta_{i-1}^{\mathrm{2}}-(2k_{i-1}{+}k_{i})\delta_{i-1}. $$
(36)
$$ c_{i}^{\prime\prime}\left( \lambda_{i} \right)=-6{\Delta} p_{i-1}\delta_{i-1}^{\mathrm{2}}+(k_{i-1}+2k_{i})\delta_{i-1}. $$
(37)

The continuous second-order derivative at point λi requires \(c_{i}^{\prime \prime }\left (\lambda _{i} \right )=c_{i+1}^{\prime \prime }\left (\lambda _{i} \right )\), for i = 1, 2,…,m − 1, i.e.

$$ \delta_{i-1}k_{i-1}+2\left( \delta_{i-1}{+}\delta_{i} \right)k_{i}{+}\delta_{i}k_{i+1}=3({\Delta} p_{i-1}\delta_{i-1}^{\mathrm{2}}+{\Delta} p_{i}\delta _{i}^{\mathrm{2}}). $$
(38)

The natural spline conditions also require \(c_{\mathrm {1}}^{\prime \prime }\left (\lambda _{\mathrm {0}} \right )=c_{m}^{\prime \prime }\left (\lambda _{m} \right )=0\), i.e.

$$ \mathrm{2}\delta_{\mathrm{0}}k_{\mathrm{0}}+\delta_{\mathrm{0}}k_{\mathrm{1}}=3{\Delta} p_{\mathrm{0}}\delta_{\mathrm{0}}^{\mathrm{2}}. $$
(39)
$$ \delta_{m-1}k_{m-1}+{\mathrm{2}\delta }_{m-1}k_{m}=3{\Delta} p_{m-1}\delta_{m-1}^{\mathrm{2}}. $$
(40)

Therefore, the m + 1 unknown parameters, ki for i = 0, 1, 2,…,m, can be solved from the tridiagonal linear equation

$$ AK=C. $$
(41)

In Eq. 41, A = [ai,j] is an (m + 1) × (m + 1) triangular matrix with a0,0 = 2δ0, am,m = 2δm− 1, ai,i− 1 = ai− 1,i = δi− 1 and ai,i = 2(δi− 1 + δi) for i = 1, 2,…,m − 1. K = [k0,k1,…,km]T, and C = [ci] is an (m + 1)-dimensional vector with \(c_{0} = 3{\Delta } p_{0} {\delta }_{0}^{2}\), \(c_{m} = 3 {\Delta } p_{m-1} {\delta }_{m-1}^{2}\) and \(c_{i} = 3({\Delta } p_{i-1} {\delta }_{i-1}^{2} + {\Delta } p_{i} {\delta }_{i}^{2})\) for i = 1, 2,…,m − 1.

In case of interpolating the three points of λ0, λ1, and λ2 with λ0 < λ1 < λ2, the solution of Eq. 41 gives

$$ k_{\mathrm{1}}=\frac{{{\Delta} }p_{\mathrm{0}}\delta_{\mathrm{0}}^{\mathrm{2}}+{\Delta} p_{\mathrm{1}}\delta_{\mathrm{1}}^{\mathrm{2}}}{\delta_{\mathrm{0}}{+}\delta _{\mathrm{1}}}. $$
(42)
$$ k_{\mathrm{0}}=1.5{\Delta} p_{\mathrm{0}}\delta_{\mathrm{0}}-0.5k_{\mathrm{1}}. $$
(43)
$$ k_{\mathrm{2}}=1.5{\Delta} p_{\mathrm{1}}\delta_{\mathrm{1}}-0.5k_{\mathrm{1}}. $$
(44)

Then, we can find the solution of the cubic spline function \(c\left (\lambda \right )=0\) iteratively, e.g., using the Newton-Raphson method. Because both \(c\left (\lambda \right )\) and \(c^{\prime }\left (\lambda \right )\) can be evaluated analytically, the computational cost of finding the solution \(c\left (\lambda \right )=0\) is negligible when compared to the cost of evaluating \(\pi \left (\lambda \right )\). In addition to \(c\left (\lambda \right )\) and \(c^{\prime }\left (\lambda \right )\), we can also analytically evaluate \(c^{\prime \prime }\left (\lambda \right )\), e.g., using Eq. 35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Jiang, H., Vink, J.C. et al. Performance enhancement of Gauss-Newton trust-region solver for distributed Gauss-Newton optimization method. Comput Geosci 24, 837–852 (2020). https://doi.org/10.1007/s10596-019-09830-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-019-09830-x

Keywords

Mathematics Subject Classification (2010)

Navigation