Skip to main content
Log in

Distributed Gauss-Newton optimization method for history matching problems with multiple best matches

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Minimizing a sum of squared data mismatches is a key ingredient in many assisted history matching (AHM) workflows. A novel approach is developed to efficiently find multiple local minima of a data mismatch objective function, by performing Gauss-Newton (GN) minimizations concurrently while sharing information between dispersed regions in the reduced parameter space dynamically. To start, a large number of different initial parameter values (i.e., model realizations) are randomly generated and are used as initial search points and base-cases for each subsequent optimization. Predicted data for all realizations are obtained by simulating these search points concurrently, and relevant simulation results for all successful simulation jobs are recorded in a training data set. A local quadratic model around each base-case is constructed using the GN formulation, where the required sensitivity matrix is approximated by linear regression of nondegenerated points, collected in the training data set, that are closest to the given base-case. A new search point for each base-case is generated by minimizing the local quadratic approximate model within a trust region, and the training data set is updated accordingly once the simulation job corresponding to each search point is successfully completed. The base-cases are updated iteratively if their corresponding search points improve the data mismatch. Finally, each base-case will converge to a local minimum in the region of attraction of the initial base-case. The proposed approach is applied to different test problems with uncertain parameters being limited to hundreds or fewer. Most local minima of these test problems are found with both satisfactory accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aanonsen, S.I., et al.: The ensemble Kalman filter in reservoir engineering—a review. SPE J. 14(3), 393–412 (2009)

    Article  Google Scholar 

  2. Alabert, F.: The practice of fast conditional simulations through the LU decomposition of the covariance matrix. Math. Geol. 19(5), 369–386 (1987)

    Article  Google Scholar 

  3. Audet, C., Dennis, J.E.: Mesh adaptive direct search algorithms for constrained optimization. SIAM J. Optim. 17(1), 188–217 (2006)

    Article  Google Scholar 

  4. Bejar, B., Belanovic, P., Zazo, S.: Distributed Gauss-Newton method for localization in ad-hoc networks. In: 44th Asilomar Conference on Signals, Systems and Computers held in Pacific Grove. doi:10.1109/ACSSC.2010.5757776 (2010)

  5. Chavent, G., Dupuy, M., Lemonnier, P.: History matching by use of optimal theory. SPE J. 15(1), 74–86 (1975)

    Article  Google Scholar 

  6. Chen, C., et al.: Assisted history matching using three derivative-free optimization algorithms. Paper SPE-154112-MS presented at the SPE Europec/EAGE annual conference held at Copenhagen (2012)

  7. Chen, C., et al.: Assisted history matching of channelized models using pluri-principal component analysis. SPE J. doi:10.2118/173192-PA (2016)

  8. Chen, W.H., et al.: A new algorithm for history matching. SPE J. 14(6), 593–608 (1974)

    Article  Google Scholar 

  9. Chen, Y., Oliver, D.: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient history matching and uncertainty quantification. Comput. Geosci. 17(4), 689–703 (2013)

    Article  Google Scholar 

  10. Chen, Y., Oliver, D.: Ensemble-based closed-loop optimization applied to Brugge field. SPE Reserv. Eval. Eng. 13(1), 56–71 (2010)

    Article  Google Scholar 

  11. Cheng, B., et al.: Distributed Gauss-Newton methodology for node localization in wireless sensor networks. In: IEEE 6th Workshop on Signal Processing Advances in Wireless Communication (SPAWC) held in New York. doi:10.1109/SPAWC.2005.1506273 (2005)

  12. Cheng, H., Dehghani, K., Billiter, T.C.: A structured approach for probabilistic-assisted history matching using evolutionary algorithms: Tengiz field applications. Paper SPE-116212-MS presented at the SPE annual technical conference and exhibition held in Denver (2008)

  13. Christie, M.A., Demyanov, V., Erbsa, D.: Uncertainty quantification for porous media flows. J. Comput. Phys. 217, 143–158 (2006)

    Article  Google Scholar 

  14. Coats, K.H., Dempsey, J.R., Henderson, J.H.: A new technique for determining reservoir description from field performance data. SPE J. 10(1), 66–74 (1970)

    Article  Google Scholar 

  15. Davis, M.: Production of conditional simulations via the LU decomposition of the covariance matrix. Math. Geol. 19(2), 91–98 (1987)

    Google Scholar 

  16. Do, S.T., Reynolds, A.C.: Theoretical connections between optimization algorithms based on an approximate gradient. Comput. Geosci. 17(6), 959–973 (2013)

    Article  Google Scholar 

  17. Doucet, A., et al.: Rao-black wellised particle filtering for dynamic bayesian networks. In: Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, pp. 176–183. Morgan Kaufmann Publishers Inc. (2000)

  18. Elsheikh, A.H., Wheeler, M.F., Hoteit, I.: Clustered iterative stochastic ensemble method for multi-modal calibration of subsurface flow models. J. Hydrol. 491, 40–55 (2013)

    Article  Google Scholar 

  19. Erway, J.B., Gill, P.E., Griffin, J.D.: Iterative methods for finding a trust-region step. SIAM J. Optim. 20(2), 1110–1131 (2009)

    Article  Google Scholar 

  20. Evensen, G.: Data Assimilation: The Ensemble Kalman Filter. Springer, New York (2007)

    Google Scholar 

  21. Fonseca, R.R., et al.: A stochastic simplex approximate gradient (StoSAG) for optimization under uncertainty. Int. J. Numer. Meth. Engng. doi:10.1002/nme.5342

  22. Gao, G., Reynolds, A.C.: An improved implementation of the LBFGS algorithm for automatic history matching. SPE J. 11(1), 1–17 (2006)

    Article  Google Scholar 

  23. Gao, G., Zafari, M., Reynolds, A.C.: Quantifying uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF. SPE J. 11(4), 506–515 (2006)

    Article  Google Scholar 

  24. Gao, G., Li, G., Reynolds, A.C.: A stochastic optimization algorithm for automatic history matching. SPE J. 12(2), 196–208 (2007)

    Article  Google Scholar 

  25. Gao, G., et al.: An efficient optimization work flow for field-scale in-situ upgrading developments. SPE J. 20(4), 701–716 (2015)

    Article  Google Scholar 

  26. Gao, G., et al.: A parallelized and hybrid data-integration algorithm for history matching of geologically complex reservoirs. SPE J. doi:10.2118/175039-PA (2016)

  27. Gao, G., et al.: Uncertainty quantification for history matching problems with multiple best matches using a distributed Gauss-Newton method. SPE-181611-MS, SPE Annual Technical Conference and Exhibition held in Dubai (2016)

  28. Gould, N.I.M., Robinson, D., Thorne, H.S.: On solving trust-region and other regularized subproblems in optimization. Math. Prog. Comp. 2(1), 21–57 (2010)

    Article  Google Scholar 

  29. Gray, G.A., Kolda, T.G.: Algorithm 856: APPSPACK 4.0: Asynchronous parallel pattern search for derivative-free optimization. ACM Trans. Math. Softw. 32(3), 485–507 (2006)

    Article  Google Scholar 

  30. Gu, Y., Oliver, D. S.: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE J. 12(4), 438–446 (2007)

    Article  Google Scholar 

  31. Hajizadeh, Y., Christie, M., Demyanov, V.: Comparative study of novel population-based optimization algorithms for history matching and uncertainty quantification: PUNQ-S3 revisited. Paper SPE-136861-MS presented at the international petroleum exhibition & conference held in Abu Dhabi (2010)

  32. Holland, J.H.: Adaptation in Natural and Artificial System. The University of Michigan Press, Ann Arbor (1975). ISBN: 978-0-26258-111. Reprinted by MIT Press

    Google Scholar 

  33. Honorio, J., et al.: Integration of PCA with a novel machine learning method for reparameterization and assisted history matching geologically complex reservoirs. Paper SPE-175038 presented at SPE annual technical conference and exhibition held in Houston (2015)

  34. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statical problems. J. Assoc. Comput. Mach. 8, 212–229 (1961)

    Article  Google Scholar 

  35. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1945. Perth (1995)

  36. Kirkpatrick, S., et al.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  Google Scholar 

  37. Kitanidis, P.K.: Quasi-linear geostatistical theory for inversing. Water Resour. 31(10), 2411–2419 (1995)

    Article  Google Scholar 

  38. Li, G., Reynolds, A.C.: Uncertainty quantification of reservoir performance predictions using stochastic optimization algorithm. Comput. Geosci. 15(3), 451–462 (2011)

    Article  Google Scholar 

  39. Li, R., Reynolds, A.C., Oliver, D.S.: Simultaneous estimation of absolute and relative permeability by automatic history matching of three-phase flow production data. JCPT 43(3), 37–46 (2004)

    Google Scholar 

  40. Liu, X., Reynolds, A.C.: Gradient-based multiobjective optimization with application to waterflooding. Optim. Comput. Geosci. 20, 677–693 (2016)

    Article  Google Scholar 

  41. Liu, X., Reynolds, A.C.: Gradient-based multiobjective optimization for maximizing expectation and minimizing uncertainty or risk with application to optimal well control problem with only bound constrtaints. SPEJ. doi:10.2118/173216-PA (2016)

  42. Mohamed, L., et al.: History matching and uncertainty quantification: multiobjective particle swarm optimisation approach. Paper SPE-143067-MS presented at the SPE EUROPEC/EAGE annual conference and exhibition held in Vienna (2011)

  43. Mohamed, L., et al.: Population MCMC methods for history matching and uncertainty quantification. Comput. Geosci. 16, 423–436 (2012)

    Article  Google Scholar 

  44. More, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4(3), 553–572 (1983)

    Article  Google Scholar 

  45. More, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms. SIAM J. Optim. 20(1), 172–191 (2009)

    Article  Google Scholar 

  46. Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7, 308–313 (1965)

    Article  Google Scholar 

  47. Nocedal, J., Wright, M.: Numerical Optimisation. Springer Verlag (1999)

  48. Okano, H., Koda, M.: An optimization algorithm based on stochastic sensitivity analysis for noisy landscapes. Reliab. Eng. Syst. Safety 79, 245–252 (2003)

    Article  Google Scholar 

  49. Oliver, D.S.: On conditional simulation to inaccurate data. Math. Geol. 28, 811–817 (1996)

    Article  Google Scholar 

  50. Oliver, D.S.: Metropolized randomized maximum likelihood for sampling from multimodal distributions. arXiv:1507.08563 (2015)

  51. Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: A review. Comput. Geosci. 15, 185–211 (2011)

    Article  Google Scholar 

  52. Oliver, D.S., Reynolds, A.C., Liu: Inverse Theory for Petroleum Reservoir Characterization and History Matching. Cambridge University Press (2008)

  53. Ouenes, A., Bhagavan, S.: Application of simulated annealing and other global optimization methods to reservoir description: myths and realities. Paper SPE-28415-MS presented at the SPE annual technical conference and exhibition held in New Orleans (1994)

  54. Powell, M.J.D.: Least Frobenius norm updating of quadratic models that satisfy interpolation conditions. Math. Program. 100(1), 183–215 (2004)

    Article  Google Scholar 

  55. Powell, M.J.D.: Developments of NEWUOA for minimization without derivatives. IMA J. Numer. Anal. (2008)

  56. Reynolds, A.C., Le, D.H., Emerick, A.A.: Ensemble-based methods for data integration and uncertainty quantification. In: 2nd EAGE Integrated Reservoir Modeling Conference (2014)

  57. Reynolds, A.C.: My decade-long journey through the field of ensemble-based data assimilation. In: Proceedings of the Ninth International EnKF Workshop. Bergen (2014)

  58. Rojas, M., Sorensen, D.C.: A Trust-region approach to the regularization of large-scale discrete form of ill-posed problems. SIAM J. Sci. Comput. 23(6), 1842–1860 (2002)

    Article  Google Scholar 

  59. Schön, T., Gustafsson, F., Nordlund, P.J.: Marginalized Particle Filters for Nonlinear State-Space Models. Linköping University Electronic Press (2003)

  60. Smith, K.W.: Cluster ensemble Kalman filter. Tellus A 59(5), 749–757 (2007)

    Article  Google Scholar 

  61. Sorensen, D.C.: Minimization of a large-scale quadratic function subject to a spherical constraint. SIAM J. Optim. 7(1), 141–161 (1997)

    Article  Google Scholar 

  62. Spall, J.C.: Adaptive stochastic approximation by the simultaneous perturbation method. IEEE Trans. Autom. Control 45(10), 1839–1853 (2000)

    Article  Google Scholar 

  63. Stordal, A.S., Karlsen, H.A., Neavdal, G., Oliver, D.S., Skaug, H.J.: Filtering with state space localized Kalman gain. Phys. D: Nonlin. Phenom. 241(13), 1123–1135 (2012)

    Article  Google Scholar 

  64. Stuart, A.M.: Inverse problem: A Bayesian perspective. Acta Numerica 19, 45–559 (2010)

    Article  Google Scholar 

  65. Tarantola, A.: Inverse problem theory and methods for model parameter estimation. SIAM (2005)

  66. Wild, S.M.: Derivative free optimization algorithms for computationally expensive functions. Ph.D dissertation, Cornell University Ithaca, New York (2009)

  67. Zhao, H., et al.: Large-scale history matching with quadratic interpolation models. Comput. Geosci. 17(1), 117–138 (2013)

    Article  Google Scholar 

  68. Zhao, T., Nehorai, A.: Information-driven distributed maximum likelihood estimation based on Gauss-Newton method in wireless sensor network. IEEE Trans. Signal Process. 55(9), 4669–4682 (2007)

    Article  Google Scholar 

  69. Zhou, W., Zhang, L.: Global convergence of a regularized factorized quasi-Newton method for nonlinear least squares problems. Comput. Appl. Math. 29(2), 195–214 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, G., Vink, J.C., Chen, C. et al. Distributed Gauss-Newton optimization method for history matching problems with multiple best matches. Comput Geosci 21, 1325–1342 (2017). https://doi.org/10.1007/s10596-017-9657-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9657-9

Keywords

Mathematics Subject Classification (2010)

Navigation