Advertisement

Computational Geosciences

, Volume 17, Issue 6, pp 1015–1031 | Cite as

Training image-based scenario modeling of fractured reservoirs for flow uncertainty quantification

  • Andre Jung
  • Darryl H. Fenwick
  • Jef Caers
ORIGINAL PAPER

Abstract

Geological characterization of naturally fractured reservoirs is potentially associated with large uncertainty. However, the geological modeling of discrete fracture networks (DFN) is considerably disconnected from uncertainty modeling based on conventional flow simulators in practice. DFN models provide a geologically consistent way of modeling fractures in reservoirs. However, flow simulation of DFN models is currently infeasible at the field scale. To translate DFN models to dual media descriptions efficiently and rapidly, we propose a geostatistical approach based on patterns. We will use experimental design to capture the uncertainties in the fracture description and generate DFN models. The DFN models are then upscaled to equivalent continuum models. Patterns obtained from the upscaled DFN models are reduced to a manageable set and used as training images for multiple-point statistics (MPS). Once the training images are obtained, they allow for fast realization of dual-porosity descriptions with MPS directly, while circumventing the time-consuming process of DFN modeling and upscaling. We demonstrate our ideas on a realistic Middle East-type fractured reservoir system.

Keywords

Fracture modeling Discrete fracture networks Geostatistics Pattern modeling Dual medium Uncertainty quantification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Petr. Eng. J. 3(3), 245–255 (1963). doi: 10.2118/426-PA Google Scholar
  2. 2.
    Dershowitz, B., LaPointe, P., Eiben, T., Wei, L.: Integration of discrete feature network methods with conventional simulator approaches. SPE. Reserv. Eval. Eng. 3(2), 165–170 (2000). doi: 10.2118/62498-PA Google Scholar
  3. 3.
    Cacas, M.C., Daniel, J.M., Letouzey, J.: Nested geological modelling of naturally fractured reservoirs. Pet. Geosci. 7, 43–52 (2001)CrossRefGoogle Scholar
  4. 4.
    Zhong, J., Aydina, A., McGuinness, D.L.: Ontology of fractures. J. Struct. Geol. 31, 251–259 (2009)CrossRefGoogle Scholar
  5. 5.
    Guerriero, V., Iannace, A., Mazzoli, S., Parente, M., Vitale, S., Giorgioni, M.: Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: implemented statistical analysis of scan line data from carbonate rocks. J. Struct. Geol. 32, 1271–1278 (2010)CrossRefGoogle Scholar
  6. 6.
    Caers, J., Zhang, T.: Multiple-point geostatistics: a quantitative vehicle for integrating geologic analogs into multiple reservoir models. In: Grammer, G.M., Harris, P.M., Eberli, G.P. (eds.) Integration of Outcrop and Modern Analogs in Reservoir Modeling, pp 383–394. AAPG, Tulsa (2002)Google Scholar
  7. 7.
    Strebelle, S.: Conditional simulation of complex geological structures using multiple-point statistics. Math. Geol. 34, 1–21 (2002)CrossRefGoogle Scholar
  8. 8.
    Caers, J., Strebelle, S., Payrazyan, K.: Stochastic integration of seismic data and geologic scenarios: a West Africa submarine channel saga. Lead. Edge 22, 192–196 (2003)CrossRefGoogle Scholar
  9. 9.
    Hu, L.Y., Chugunova, T.: Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour. Res. 44, W11413 (2008)Google Scholar
  10. 10.
    Daly, C., Caers, J.: Multi-point geostatistics—an introductory overview. First Break 28, 39–47 (2010)Google Scholar
  11. 11.
    Bond, C.E., Gibbs, A.D., Shipton, Z.K., Jones, S.: What do you think this is? Conceptual uncertainty in geoscience interpretation. GSA Today 17, 4–10 (2007)CrossRefGoogle Scholar
  12. 12.
    Cherpeau, N., Caumon, G., Caers, J., Lévy, B.: Method for stochastic inverse modeling of fault geometry and connectivity using flow data. Math. Geosci. 44, 147–168 (2012)CrossRefGoogle Scholar
  13. 13.
    Feyen, L., Caers, J.: Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Adv. Water Resour. 29, 912–929 (2006)CrossRefGoogle Scholar
  14. 14.
    Suzuki, S., Caumon, G., Caers, J.: Dynamic data integration for structural modeling: model screening approach using a distance-based model parameterization. Comput. Geosci. 12, 105–119 (2008)CrossRefGoogle Scholar
  15. 15.
    Scheidt, C., Caers, J.: Uncertainty quantification in reservoir performance using distances and Kernel methods—application to a West Africa deepwater turbidite reservoir. SPEJ 14(4), 680–692 (2009). doi: 10.2118/118740-PA Google Scholar
  16. 16.
    Park, H., Scheidt, C., Fenwick, D., Boucher, A., Caers, J.: History matching and uncertainty quantification of facies models with multiple geological interpretations. Comput. Geosci. 17(4), 609–621 (2013). doi: 10.1007/s10596-013-9343-5 CrossRefGoogle Scholar
  17. 17.
    Bourbiaux, B., Basquet, R., Cacas, M.-C., Daniel, J.-M., Sarda, S.: An integrated workflow to account for multi-scale fractures in reservoir simulation models: implementation and benefits.In: Proceedings of Abu Dhabi International Petroleum Exhibition and Conference (2002)Google Scholar
  18. 18.
    Souche, L., Astratti, D., Aarre, V., Clerc, N., Clark, A., Al Dayyni, T.N.A., Mahmoud, S.L.: A dual representation of multiscale fracture network modelling: application to a giant UAE carbonate field. First Break 30, 43–52 (2012)Google Scholar
  19. 19.
    Saleri, N.G., Al-Kaabi, A.O., Muallem, A.S.: Haradh III: a milestone for smart fields. J. Pet. Technol. 58, 28–32 (2006)Google Scholar
  20. 20.
    Streamsim Technologies: 3DSL user manual V 4.10., San Francisco (2013)Google Scholar
  21. 21.
    Ehrenberg, S.N., Nadeau, P.H., Aqrawi, A.AM.: A comparison of Khuff and Arab reservoir potential throughout the Middle East. AAPG Bull. 91, 275–286 (2007)CrossRefGoogle Scholar
  22. 22.
    Kazemi, H., Merrill, L.S., Porterfield, K.L., Zeman, P.R.: Numerical simulation of water-oil flow in naturally fractured reservoirs. SPE J. 16(6), 317–326 (1976). doi: 10.2118/5719-PA Google Scholar
  23. 23.
    Nelson, R.: Geologic Analysis of Naturally Fractured Reservoirs, 2nd edn. Gulf Professional Publishing, Oxford (2001)Google Scholar
  24. 24.
    Zahm, C.K., Hennings, P.H.: Complex fracture development related to stratigraphic architecture: challenges for structural deformation prediction, Tensleep Sandstone at the Alcova anticline, Wyoming. AAPG Bull. 93, 1427–1446 (2009)CrossRefGoogle Scholar
  25. 25.
    Chopra, S., Marfurt, K.J.: Volumetric curvature attributes for fault/fracture characterization. First Break 25, 35–46 (2007)Google Scholar
  26. 26.
    Narr, W., Schechter, D.S., Thompson, L.B.: Naturally Fractured Reservoir Characterization. Society of Petroleum Engineers, Richardson (2006)Google Scholar
  27. 27.
    Chopra, S.: Coherence cube and beyond. First Break 20, 27–33 (2002)CrossRefGoogle Scholar
  28. 28.
    Neves, F.A., Zahrani, M.S., Bremkamp, S.W.: Detection of potential fractures and small faults using seismic attributes. Lead. Edge 23, 903–906 (2004)CrossRefGoogle Scholar
  29. 29.
    Gabrielsen, R.H.: Characterization of joints and faults. In: Rock Joints: Proceedings of a Regional Conference of the International Society for Rock Mechanics, Loen, 4-6 June 1990, pp 11–17. Taylor & Francis (Balkema), Rotterdam (1990)Google Scholar
  30. 30.
    Questiaux, J.-M., Couples, G.D., Ruby, N.: Fractured reservoirs with fracture corridors. Geophys. Prospect. 58, 279–295 (2010)CrossRefGoogle Scholar
  31. 31.
    Dershowitz, W.S., Herda, H.H.: Interpretation of fracture spacing and intensity. In: Tillerson and Wawersik (eds.) The 33rd U.S. Symposium on Rock Mechanics (USRMS), June 3–5, 1992, pp 757–766. American Rock Mechanics Association, Santa Fe, NM, Alexandria (1992)Google Scholar
  32. 32.
    Golder Associates: FracMan 7.4., Redmond (2012)Google Scholar
  33. 33.
    Jones, M.A., Pringle, A.B., Fulton, I.M., O’Neill, S.: Discrete fracture network modelling applied to groundwater resource exploitation in southwest Ireland. Geol. Soc. Lond. Spec. 155, 83–103 (1999)CrossRefGoogle Scholar
  34. 34.
    Snow, D.T.: Anisotropie permeability of fractured media. Water Resour. Res. 5, 1273–1289 (1969)CrossRefGoogle Scholar
  35. 35.
    Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res.: Solid Earth. 92, 1337–1347 (1987)CrossRefGoogle Scholar
  36. 36.
    Renshaw, C.E., Park, J.C.: Effect of mechanical interactions on the scaling of fracture length and aperture. Nature 386, 482–484 (1997)CrossRefGoogle Scholar
  37. 37.
    Oda, M.: Permeability tensor for discontinuous rock masses. Geotechnique 35, 483–495 (1985)CrossRefGoogle Scholar
  38. 38.
    Caers, J.: Modeling Uncertainty in the Earth Sciences. Wiley, Oxford (2011)Google Scholar
  39. 39.
    Scheidt, C., Caers, J.: Representing spatial uncertainty using distances and kernels. Math. Geosci. 41, 397–419 (2008)CrossRefGoogle Scholar
  40. 40.
    Dubuisson, M.-P., Jain, A.K.: A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR International Conference on Pattern Recognition, 1994. Conference A: Computer Vision Image Processing, vol. 1, pp 566–568 (1994)Google Scholar
  41. 41.
    Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K.: Cluster: Cluster Analysis Basics and Extensions. R package version 1.14.1 (2011)Google Scholar
  42. 42.
    R Development Core Team: R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (2011)Google Scholar
  43. 43.
    Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRefGoogle Scholar
  44. 44.
    Honarkhah, M., Caers, J.: Stochastic simulation of patterns using distance-based pattern modeling. Math. Geosci. 42, 487–517 (2010)CrossRefGoogle Scholar
  45. 45.
    Remy, N., Boucher, A., Wu, J.: Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press, Cambridge (2009)Google Scholar
  46. 46.
    Honarkhah, M., Caers, J.: Direct pattern-based simulation of non-stationary geostatistical models. Math. Geosci. 44, 651–672 (2012)CrossRefGoogle Scholar
  47. 47.
    Lees, J.M.: RFOC: Graphics for Spherical Distributions and Earthquake Focal Mechanisms. R package version 3, 2 (2012)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Energy Resources EngineeringStanford UniversityStanfordUSA
  2. 2.Streamsim TechnologiesSan FranciscoUSA

Personalised recommendations