Skip to main content
Log in

Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

For the hyperbolic conservation laws with discontinuous-flux function, there may exist several consistent notions of entropy solutions; the difference between them lies in the choice of the coupling across the flux discontinuity interface. In the context of Buckley–Leverett equations, each notion of solution is uniquely determined by the choice of a “connection,” which is the unique stationary solution that takes the form of an under-compressive shock at the interface. To select the appropriate connection, following Kaasschieter (Comput Geosci 3(1):23–48, 1999), we use the parabolic model with small parameter that accounts for capillary effects. While it has been recognized in Cancès (Networks Het Media 5(3):635–647, 2010) that the “optimal” connection and the “barrier” connection may appear at the vanishing capillarity limit, we show that the intermediate connections can be relevant and the right notion of solution depends on the physical configuration. In particular, we stress the fact that the “optimal” entropy condition is not always the appropriate one (contrarily to the erroneous interpretation of Kaasschieter’s results which is sometimes encountered in the literature). We give a simple procedure that permits to determine the appropriate connection in terms of the flux profiles and capillary pressure profiles present in the model. This information is used to construct a finite volume numerical method for the Buckley–Leverett equation with interface coupling that retains information from the vanishing capillarity model. We support the theoretical result with numerical examples that illustrate the high efficiency of the algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adimurthi, Jaffré, J., Veerappa Gowda, G.D.: Godunov-type methods for conservation laws with a flux function discontinuous in space. SIAM J. Numer. Anal. 42(1), 179–208 (2004, electronic)

    Article  Google Scholar 

  2. Adimurthi, Mishra, S., Veerappa Gowda, G.D.: Optimal entropy solutions for conservation laws with discontinuous flux-functions. J. Hyperbolic Differ. Equ. 2(4), 783–837 (2005)

    Article  Google Scholar 

  3. Alt, H.W., Luckhaus, S., Visintin, A.: On nonstationary flow through porous media. Ann. Mat. Pura Appl. (4) 136, 303–316 (1984)

    Article  Google Scholar 

  4. Andreianov, B., Cancès, C.: The Godunov scheme for scalar conservation laws with discontinuous bell-shaped flux functions. Appl. Math. Lett. 25, 1844–1848 (2012). doi:10.1016/j.aml.2012.02.044

    Article  Google Scholar 

  5. Andreianov, B., Goatin, P., Seguin, N.: Finite volume schemes for locally constrained conservation laws. Numer. Math. 115(4), 609–645 (2010)

    Article  Google Scholar 

  6. Andreianov, B., Karlsen, K.H., Risebro, N.H.: On vanishing viscosity approximation of conservation laws with discontinuous flux. Networks Het. Media 5(3), 617–633 (2010)

    Article  Google Scholar 

  7. Andreianov, B., Karlsen, K., Risebro, N.: A theory of L 1-dissipative solvers for scalar conservation laws with discontinuous flux. Arch. Ration. Mech. Anal. 201, 27–86 (2011). doi:10.1007/s00205-010-0389-4

    Article  Google Scholar 

  8. Audusse, E., Perthame, B.: Uniqueness for scalar conservation laws with discontinuous flux via adapted entropies. Proc. Roy. Soc. Edinb., Sect. A 135(2), 253–265 (2005)

    Article  Google Scholar 

  9. Aziz, K., Settari, A.: Petroleum reservoir simulation. Elsevier Applied Science Publishers, Londres (1979)

    Google Scholar 

  10. Bachmann, F.: Analysis of a scalar conservation law with a flux function with discontinuous coefficients. Adv. Differ. Equ. 9, 1317–1338 (2004)

    Google Scholar 

  11. Baiti, P., Jenssen, H.K.: Well-posedness for a class of 2 × 2 conservation laws with L data. J. Differ. Equ. 140(1), 161–185 (1997)

    Article  Google Scholar 

  12. Bardos, C., LeRoux, A.-Y., Nédélec, J.-C.: First order quasilinear equations with boundary conditions. Commun. Partial Differ. Equ. 4(9), 1017–1034 (1979)

    Article  Google Scholar 

  13. Bear, J.: Dynamic of fluids in porous media. American Elsevier, New York (1972)

    Google Scholar 

  14. Bertsch, M., Dal Passo, R., van Duijn, C.J.: Analysis of oil trapping in porous media flow. SIAM J. Math. Anal. 35(1), 245–267 (2003, electronic)

    Article  Google Scholar 

  15. Bouchut, F., Perthame, B.: Kružkov’s estimates for scalar conservation laws revisited. Trans. Am. Math. Soc. 350(7), 2847–2870 (1998)

    Article  Google Scholar 

  16. Brenner, K., Cancès, C., Hilhorst, D.: A convergent finite volume scheme for two-phase flows in porous media with discontinuous capillary pressure field. In: Proceeding of the Conference FVCA6, vol. 1, pp. 185–193. Springer (2011)

  17. Bürger, R., García, A., Karlsen, K.H., Towers, J.D.: Difference schemes, entropy solutions, and speedup impulse for an inhomogeneous kinematic traffic flow model. Networks Het. Media 3, 1–41 (2008)

    Article  Google Scholar 

  18. Bürger, R., Karlsen, K.H., Mishra, S., Towers, J.D.: On conservation laws with discontinuous flux. In: Wang, Y., Hutter, K. (eds.) Trends in applications of mathematics to mechanics, pp. 75–84. Shaker Verlag, Aachen (2005)

    Google Scholar 

  19. Bürger, R., Karlsen, K.H., Towers, J.D.: An Engquist-Osher-type scheme for conservation laws with discontinuous flux adapted to flux connections. SIAM J. Numer. Anal. 47(3), 1684–1712 (2009)

    Article  Google Scholar 

  20. Buzzi, F., Lenzinger, M., Schweizer, B.: Interface conditions for degenerate two-phase flow equations in one space dimension. Analysis 29, 299–316 (2009)

    Article  Google Scholar 

  21. Cancès, C.: Two-phase flows involving discontinuities on the capillary pressure. In: Proceeding of the Conference FVCA5, pp. 249–256. Wiley & Sons (2008)

  22. Cancès, C.: Finite volume scheme for two-phase flow in heterogeneous porous media involving capillary pressure discontinuities. M2AN Math. Model. Numer. Anal. 43, 973–1001 (2009)

    Article  Google Scholar 

  23. Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. I. Convergence to the optimal entropy solution. SIAM J. Math. Anal. 42(2), 946–971 (2010)

    Article  Google Scholar 

  24. Cancès, C.: Asymptotic behavior of two-phase flows in heterogeneous porous media for capillarity depending only on space. II. Nonclassical shocks to model oil-trapping. SIAM J. Math. Anal. 42(2), 972–995 (2010)

    Article  Google Scholar 

  25. Cancès, C.: On the effects of discontinuous capillarities for immiscible two-phase flows in porous media made of several rock-types. Networks Het. Media 5(3), 635–647 (2010)

    Article  Google Scholar 

  26. Cancès, C., Gallouët, Th.: On the time continuity of entropy solutions. J. Evol. Equ. 11(1), 43–55 (2011)

    Article  Google Scholar 

  27. Cancès, C., Gallouët, Th., Porretta, A.: Two-phase flows involving capillary barriers in heterogeneous porous media. Interfaces Free Bound. 11(2), 239–258 (2009)

    Article  Google Scholar 

  28. Cancès, C., Pierre, M.: An existence result for multidimensional immiscible two-phase flows with discontinuous capillary pressure field. hal-00518219 (2010)

  29. Cancès, C., Seguin, N.: Error estimate for Godunov approximation of locally constrained conservation laws. SIAM J. Numer. Anal. 50(6), 3036–3060 (2012). doi:10.1137/110836912

    Article  Google Scholar 

  30. Carrillo, J.: Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal. 147(4), 269–361 (1999)

    Article  Google Scholar 

  31. Colombo, R.M., Goatin, P.: A well posed conservation law with a variable unilateral constraint. J. Differ. Equ. 234(2), 654–675 (2007)

    Article  Google Scholar 

  32. Chen, G.-Q., Frid, H.: Divergence-measure fields and hyperbolic conservation laws. Arch. Ration. Mech. Anal. 147, 89–118 (1999)

    Article  Google Scholar 

  33. Eymard, R., Gallouët, T., Herbin, R.: Finite volume methods. In: Ciarlet, P., Lions, J.-L. (eds.) Handbook of Numerical Analysis, vol. VII. North-Holland (2000)

  34. Enchéry, G., Eymard, R., Michel, A.: Numerical approximation of a two-phase flow in a porous medium with discontinuous capillary forces. SIAM J. Numer. Anal. 43(6), 2402–2422 (2006)

    Article  Google Scholar 

  35. Ern, A., Mozolevski, I., Schuh, L.: Discontinuous galerkin approximation of two-phase flows in heterogeneous porous media with discontinuous capillary pressures. Comput. Methods Appl. Mech. Eng. 199, 1491–1501 (2010)

    Article  Google Scholar 

  36. Ersland, B.G., Espedal, M.S., Nybo, R.: Numerical methods for flows in a porous medium with internal boundary. Comput. Geosci. 2, 217–240 (1998)

    Article  Google Scholar 

  37. Gimse, T., Risebro, N.H.: Riemann problems with a discontinuous flux function. In: Proceedings of Third International Conference on Hyperbolic Problems, vol. I, II (Uppsala, 1990), pp. 488–502. Studentlitteratur, Lund (1991)

  38. Gimse, T., Risebro, N.H.: Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23(3), 635–648 (1992)

    Article  Google Scholar 

  39. Hoteit, H., Firoozabadi, A.: Numerical modeling of two-phase flow in heterogeneous permeable media with different capillary pressure. Adv. Water Resour. 31, 56–73 (2008)

    Article  Google Scholar 

  40. Kaasschieter, E.F.: Solving the Buckley–Leverett equation with gravity in a heterogeneous porous medium. Comput. Geosci. 3(1), 23–48 (1999)

    Article  Google Scholar 

  41. Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. 81(123), 228–255 (1970)

    Google Scholar 

  42. Lions, P.-L., Perthame, B., Tadmor, E.: A kinetic formulation of multidimensional scalar conservation laws and related equations. J. Am. Math. Soc. 7(1), 169–191 (1994)

    Article  Google Scholar 

  43. Maliki, M., Touré, H.: Uniqueness of entropy solutions for nonlinear degenerate parabolic problems. J. Evol. Equ. 3(4), 603–622 (2003)

    Article  Google Scholar 

  44. Yu. Panov, E.: On sequences of measure valued solutions or a first order quasilinear equation. Mat. Sb. 185(2), 87–106 (1994, Russian); Engl. tr. in Russian Acad. Sci. Sb. Math. 81(1), 211–227 (1995)

    Article  Google Scholar 

  45. Yu. Panov, E.: Existence of strong traces for generalized solutions of multidimensional scalar conservation laws. J. Hyperbolic Differ. Equ. 2(4), 885–908 (2005)

    Article  Google Scholar 

  46. Yu. Panov, E.: Existence of strong traces for quasi-solutions of multidimensional conservation laws. J. Hyperbolic Differ. Equ. 4(4), 729–770 (2007)

    Article  Google Scholar 

  47. Yu. Panov, E.: Existence and strong pre-compactness properties for entropy solutions of a first-order quasilinear equation with discontinuous flux. Arch. Ration. Mech. Anal. 195(2), 643–673 (2009)

    Article  Google Scholar 

  48. Schweizer, B.: Homogenization of degenerate two-phase flow equations with oil trapping. SIAM J. Math. Anal. 39(6), 1740–1763 (2008)

    Article  Google Scholar 

  49. Serre, D.: Systems of Conservation Laws. 2. Geometric Structures, Oscillations, and Initial-Boundary Value Problems. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  50. van Duijn, C.J., Mikelić, A., Pop, I.S.: Effective equations for two-phase flow with trapping on the micro scale. SIAM J. Appl. Math. 62, 1531–1568 (2002)

    Article  Google Scholar 

  51. van Duijn, C.J., Molenaar, J., de Neef, M.J.: The effect of capillary forces on immiscible two-phase flows in heterogeneous porous media. Transp. Porous Media 21, 71–93 (1995)

    Article  Google Scholar 

  52. Vasseur, A.: Strong traces of multidimensional scalar conservation laws. Arch. Ration. Mech. Anal. 160(3), 181–193 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clément Cancès.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreianov, B., Cancès, C. Vanishing capillarity solutions of Buckley–Leverett equation with gravity in two-rocks’ medium. Comput Geosci 17, 551–572 (2013). https://doi.org/10.1007/s10596-012-9329-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9329-8

Keywords

Mathematics Subject Classifications (2010)

Navigation