Skip to main content
Log in

Exact solutions of generalized thermoelastic medium with double porosity under L–S theory

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, a general solution to the field equations of a generalized thermoelastic medium with double porosity has been obtained. To investigate the problem, we use the Lord–Shulman theory in the thermoelasticity. The half-space of an isotropic homogeneous thermoelastic material is considered. Using the normal mode analysis and the numerical inversion technique, the analytic expressions of the physical quantities are obtained. Numerically, computed results for these quantities and its depicted graphically lead to study the effect of porosity. Comparisons in the presence and absence of double porosity, in two different times, are obtained. Although the problem has been solved theoretically, it is possible for researchers to benefit from their results in many different sciences, for example, in the field of geophysics, earthquake engineering, along with seismologist working in the field of mining tremors and drilling into the crust of the earth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

λ, μ :

Lame’ parameters

δ ij :

Kronecker delta

c e :

The specific heat at constant strain

T 0 :

The reference temperature

σ i :

The equilibrated stress corresponding to v1

τ i :

The equilibrated stress corresponding to v2

b, d, b1, γ, γ1, γ2 :

The constitutive coefficients

v 1 :

The volume fraction field corresponding to pores and v2 is the volume fraction field corresponding to fissures

Ψ, Φ:

The volume fraction fields corresponding to v1 and v2, respectively

K1 and K2 :

The coefficients of equilibrated inertia

T :

The temperature change measured form the absolute temperature T0

u i :

The displacement vector

ρ :

The mass density

τ ij :

The stress tensor

τ 0 :

The relaxation time

K ≥ 0:

The thermal conductivity

References

  1. R B Hetnarski and J Ignaczak J. Therm. Stress.22 451 (1999)

    Article  Google Scholar 

  2. H Lord and Y Shulman J. Mech. Phys. Solids15 299 (1967)

    Article  ADS  Google Scholar 

  3. M I A Othman J. Therm. Stress.25 1027 (2002)

    Article  Google Scholar 

  4. M I A Othman Acta Mech.169 37 (2004)

    Article  Google Scholar 

  5. M Marin Meccanica, 51 1127 (2016)

    Article  MathSciNet  Google Scholar 

  6. M Said Meccanica50 2077 (2015)

    Article  MathSciNet  Google Scholar 

  7. M Marin and G Stan Carpath. J. Math.29 33 (2013)

    Google Scholar 

  8. M Said Multidiscip. Model. Mater. Struct.12 362 (2016)

    Article  Google Scholar 

  9. M Said Comput. Mater. Contin.52 1 (2016)

    Google Scholar 

  10. G I Barrenblatt, I P Zheltov and I N Kockina Prikl. Mat. Mekh. 24 1286 (1960)

    Google Scholar 

  11. R Wilson and E Aifantis Int. J. Eng. Sci.20 1009 (1982)

    Article  Google Scholar 

  12. N Khalili and S Valliappan Eur. J. Mech.15 321 (1996)

    Google Scholar 

  13. I Masters, W K S Pao and R W Lewis Int. J. Numer. Methods Eng.49 421 (2000)

    Article  Google Scholar 

  14. J G Berryman and H F Wang Int. J. Rock Mech. Min. Sci.37 63 (2000)

    Article  Google Scholar 

  15. N Khalili and A P S Selvadurai Geophys. Res. Lett.30 2268 (2003)

    ADS  Google Scholar 

  16. S R Pride and J G Berryman Phys. Rev. E 68 036603 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y Zhao and M C Wang Int. J. Rock Mech. Min. Sci.43 1128 (2006)

    Article  Google Scholar 

  18. M Svanadze Proc. Appl. Math. Mech.10 309 (2010)

    Article  Google Scholar 

  19. A Ainouz Mathematica Bohemica136 357 (2011)

    MathSciNet  Google Scholar 

  20. M Svanadze Acta Applicandae Mathematicae122 461 (2012)

    MathSciNet  Google Scholar 

  21. B Straughan Int. J. Eng. Sci.65 1 (2013)

    Article  Google Scholar 

  22. M Marin and A Oechsner Contin. Mech. Thermodyn.29(6) 1365 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. R Ellahi, M Raza and N S Akbar J. Porous Media21(7) 589 (2018)

    Article  Google Scholar 

  24. R Ellahi, M Raza and N S Akbar J. Porous Media20(5) 461 (2017)

    Article  Google Scholar 

  25. M Hassan, M Marin, A Alsharif and R Ellahi Phys. Lett. A382 2749 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  26. S Z Alamri, R Ellahi, N Shehzad and A Zeeshan J. Mol. Liq.273 292 (2019)

    Article  Google Scholar 

  27. M I A Othman and M Marin Results Phys.7 3863 (2017)

    Article  ADS  Google Scholar 

  28. M I A Othman and E M Abd-Elaziz Results Phys.7 4253 (2017)

    Article  ADS  Google Scholar 

  29. D Iesan and R Quintanilla J. Therm. Stress.37 1017 (2014)

    Article  Google Scholar 

  30. M I A Othman, W M Hasona and NT Mansour Multidiscip. Model. Mater. Struct.11 544 (2015)

    Article  Google Scholar 

  31. N Khalili Geophys Res. Lett. 30(22) 2153 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nehal T Mansour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, M.A., Othman, M.I.A., Tantawi, R.S. et al. Exact solutions of generalized thermoelastic medium with double porosity under L–S theory. Indian J Phys 94, 725–736 (2020). https://doi.org/10.1007/s12648-019-01505-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01505-8

Keywords

PACS Nos.

Navigation